A. Atlantic mackerel (NAFO Subareas 3-6)

1. Spatial and ecosystem influences on stock dynamics:
 a. Evaluate possible spatial influences on the stock dynamics. Recommend any need to modify the current stock definition for future stock assessments.
 b. Describe data (e.g., oceanographic, habitat, or species interactions) that might pertain to Atlantic mackerel distribution and availability. If possible, integrate the results into the stock assessment (TOR-4).

2. Estimate catch from all sources including landings and discards. Describe the spatial and temporal distribution of landings, discards, and fishing effort. Characterize the uncertainty in these sources of data.

3. Evaluate fishery independent and fishery dependent indices being used in the assessment (e.g., indices of relative or absolute abundance, recruitment, state surveys, age-length data, etc.). Characterize the uncertainty and any bias in these sources of data.

4. Estimate annual fishing mortality, recruitment and stock biomass (both total and spawning stock) for the time series, and estimate their uncertainty. Develop alternative approaches which might also be able to estimate population parameters. Include a comparison of new assessment results with those from previous assessment(s).

5. State the existing stock status definitions for “overfished” and “overfishing”. Then update or redefine biological reference points (BRPs; point estimates or proxies for B_{MSY}, B_{THRESHOLD}, F_{MSY} and MSY) and provide estimates of their uncertainty. If analytic model-based estimates are unavailable, consider recommending alternative measurable proxies for BRPs. Comment on the scientific adequacy of existing BRPs and the “new” (i.e., updated, redefined, or alternative) BRPs.

6. Make a recommended stock status determination (overfishing and overfished) based on new results developed for this peer review. Include qualitative written statements about the condition of the stock that will help to inform NOAA Fisheries about stock status.

7. Develop approaches and apply them to conduct stock projections.
 a. Provide numerical annual projections (3 years) and the statistical distribution (e.g., probability density function) of the catch at F_{MSY} or an F_{MSY} proxy (i.e. the overfishing level, OFL) (see Appendix to the SAW TORs). Each projection should estimate and report annual probabilities of exceeding threshold BRPs for F, and probabilities of falling below threshold BRPs for biomass. Use a sensitivity analysis approach in which a range of assumptions about the most important uncertainties in the assessment are considered (e.g., terminal year abundance, variability in recruitment).
 b. Comment on which projections seem most realistic. Consider the major uncertainties in the assessment as well as sensitivity of the projections to various assumptions. Identify reasonable projection parameters (recruitment, weight-at-age, retrospective adjustments, etc.) to use when setting specifications.
 c. Describe this stock’s vulnerability (see “Appendix to the SAW TORs”) to becoming overfished, and how this could affect the choice of ABC.
8. Review, evaluate and report on the status of the SARC and Working Group research recommendations listed in most recent peer reviewed assessment and review panel reports. Identify new research recommendations.

*NOAA Fisheries has final responsibility for making the stock status determination based on best available scientific information.

Appendix to SAW TORs: Clarification of Terms used in the SAW Terms of Reference

*Acceptable biological catch (ABC) is a level of a stock or stock complex’s annual catch that accounts for the scientific uncertainty in the estimate of Overfishing Limit (OFL) and any other scientific uncertainty…” (p. 3208) [In other words, OFL ≥ ABC.]

ABC for overfished stocks. For overfished stocks and stock complexes, a rebuilding ABC must be set to reflect the annual catch that is consistent with the schedule of fishing mortality rates in the rebuilding plan. (p. 3209)

NMFS expects that in most cases ABC will be reduced from OFL to reduce the probability that overfishing might occur in a year. (p. 3180)

ABC refers to a level of “catch” that is “acceptable” given the “biological” characteristics of the stock or stock complex. As such, Optimal Yield (OY) does not equate with ABC. The specification of OY is required to consider a variety of factors, including social and economic factors, and the protection of marine ecosystems, which are not part of the ABC concept. (p. 3189)

“Vulnerability. A stock’s vulnerability is a combination of its productivity, which depends upon its life history characteristics, and its susceptibility to the fishery. Productivity refers to the capacity of the stock to produce Maximum Sustainable Yield (MSY) and to recover if the population is depleted, and susceptibility is the potential for the stock to be impacted by the fishery, which includes direct captures, as well as indirect impacts to the fishery (e.g., loss of habitat quality).” (p. 3205)

Participation among members of a Stock Assessment Working Group:

Anyone participating in SAW meetings that will be running or presenting results from an assessment model is expected to supply the source code, a compiled executable, an input file with the proposed configuration, and a detailed model description in advance of the model meeting. Source code for NOAA Toolbox programs is available on request. These measures allow transparency and a fair evaluation of differences that emerge between models.

Guidance to SAW WG about “Number of Models to include in the Assessment Report”:

In general, for any TOR in which one or more models are explored by the WG, give a detailed presentation of the “best” model, including inputs, outputs, diagnostics of model adequacy, and sensitivity analyses that evaluate robustness of model results to the assumptions. In less detail, describe other models that were evaluated by the WG and explain their strengths, weaknesses and results in relation to the “best” model. If selection of a “best” model is not possible, present alternative models in detail, and summarize the relative...
utility each model, including a comparison of results. It should be highlighted whether any models represent a minority opinion.