SPERM WHALE (*Physeter macrocephalus*):
North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The distribution of the sperm whale in the U.S. Exclusive Economic Zone (EEZ) occurs on the continental shelf edge, over the continental slope, and into mid-ocean regions (Figure 1). Waring *et al.* (1993, 2001) suggested that this offshore distribution is more commonly associated with the Gulf Stream edge and other features. However, the sperm whales that occur in the eastern U.S. Atlantic EEZ likely represent only a fraction of the total stock. The nature of linkages of the U.S. habitat with those to the south, north, and offshore is unknown. Historical whaling records compiled by Schmidly (1981) suggested an offshore distribution off the southeast U.S., over the Blake Plateau, and into deep ocean waters. In the southeast Caribbean, both large and small adults, as well as calves and juveniles of different sizes are reported (Watkins *et al.* 1985). Whether the northwestern Atlantic population is discrete from northeastern Atlantic is currently unresolved. The International Whaling Commission recognizes one stock for the North Atlantic. Based on reviews of many types of stock studies, (i.e., tagging, genetics, catch data, mark-recapture, biochemical markers, etc.) Reeves and Whitehead (1997) and Dufault *et al.* (1999) suggested that sperm whale populations have no clear geographic structure. Ocean-wide genetic studies (Lyrholm and Gyllensten 1998; Lyrholm *et al.* 1999) indicated low genetic diversity, but strong differentiation between potential social (matrilineally related) groups. Further, Englehaupt *et al.* (2009) found no differentiation for mtDNA between samples from the western North Atlantic and from the North Sea, but significant differentiation between samples from the Gulf of Mexico and from the Atlantic Ocean just outside the Gulf of Mexico. These ocean-wide findings, combined with observations from other studies, indicate stable social groups, site fidelity, and latitudinal range limitations in groups of females and juveniles (Whitehead 2002). In contrast, males migrate to polar regions to feed and move among populations to breed (Whitehead 2002, Englehaupt 2009). There exists one tag return of a male tagged off Browns Bank (Nova Scotia) in 1966 and returned from Spain in 1973 (Mitchell 1975). Another male taken off northern Denmark in August 1981 had been wounded the previous summer by whalers off the Azores (Reeves and Whitehead 1997). Steiner *et al.* (2012) reported on the resightings of photographed individual male sperm whales between the Azores and Norway. In the U.S. Atlantic EEZ waters, there appears to be a distinct seasonal cycle (CETAP 1982; Scott and Sadove 1997). In winter, sperm whales are concentrated east and northeast of Cape Hatteras. In spring, the center of distribution shifts northward to east of Delaware and Virginia, and is widespread throughout the central portion of the mid-Atlantic bight and the southern portion of Georges Bank. In summer, the distribution is similar but now also includes the area east and north of Georges Bank and into the Northeast Channel region, as well as the continental shelf (inshore of the 100-m isobath) south of New England. In the fall, sperm whale occurrence south of New England on the continental shelf is at its highest level, and there remains a continental shelf edge occurrence in the mid-Atlantic bight. Similar inshore (<200 m) observations have been made on the southwestern (Kenney, pers. comm) and eastern Scotian Shelf, particularly in the region of “the Gully” (Whitehead *et al.* 1991).
Geographic distribution of sperm whales may be linked to their social structure and their low reproductive rate and both of these factors have management implications. Several basic groupings or social units are generally recognized—nursery schools, harem or mixed schools, juvenile or immature schools, bachelor schools, bull schools or pairs, and solitary bulls (Best 1979; Whitehead et al. 1991; Christal et al. 1998). These groupings have a distinct geographical distribution, with females and juveniles generally based in tropical and subtropical waters, and males more wide-ranging and occurring in higher latitudes. Male sperm whales are present off and sometimes on the continental shelf along the entire east coast of Canada south of Hudson Strait, whereas, females rarely migrate north of the southern limit of the Canadian EEZ (Reeves and Whitehead 1997; Whitehead 2002). Off the northeast U.S., Cetacean and Turtle Assessment Program (CETAP) and NEFSC sightings in shelf-edge and off-shelf waters included many social groups with calves/juveniles (CETAP 1982; Waring et al. 1992, 1993). The basic social unit of the sperm whale appears to be the mixed school of adult females plus their calves and some juveniles of both sexes, normally numbering 20-40 animals in all. There is evidence that some social bonds persist for many years (Christal et al. 1998).

POPULATION SIZE

Several estimates from selected regions of sperm whale habitat exist for select time periods, however, at present there is no reliable estimate of total sperm whale abundance in the entire western North Atlantic. Sightings have been almost exclusively in the continental shelf edge and continental slope areas (Figure 1). The best recent abundance estimate for sperm whales is the sum of the 2011 surveys—2,288 (CV=0.28). Because all the sperm whale estimates presented here were not corrected for dive-time, they are likely downwardly biased and an underestimate of actual abundance. The average dive-time of sperm whales is approximately 30-60 min (Whitehead et al. 1991; Watkins et al. 1993; Amano and Yoshioka 2003; Watwood et al. 2006), therefore, the proportion of time that they are at the surface and available to visual observers is assumed to be low.

Earlier abundance estimates

Please see Appendix IV for a summary of abundance estimates, including earlier estimates and survey descriptions. Due to changes in survey methodology these historical data should not be used to make comparisons to more current estimates.

Recent surveys and abundance estimates

An abundance estimate of 1,593 (CV=0.36) sperm whales was generated from a shipboard and aerial survey conducted during Jun–Aug 2011 (Palka 2012). The aerial portion that contributed to the abundance estimate covered 5,313 km of tracklines that were over waters north of New Jersey from the coastline to the 100-m depth contour, through the U.S. and Canadian Gulf of Maine and up to and including the lower Bay of Fundy. The shipboard portioned covered 3,107 km of tracklines that were in waters offshore of Virginia to Massachusetts (waters that were deeper than the 100-m depth contour out to beyond the U.S. EEZ). Both sighting platforms used a double-platform data collection procedure, which allows estimation of abundance corrected for perception bias of the detected species (Laake and Borchers, 2004). Shipboard data were inspected to determine if there was significant responsive movement to the ship (Palka and Hammond 2001). Because there was an insignificant amount of responsive movement for this species, the estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009).

An abundance estimate of 695 (CV=0.39) sperm whales was generated from a shipboard survey conducted concurrently (June-August 2011) in waters between central Virginia and central Florida. This shipboard survey included shelf-break and inner continental slope waters deeper than the 50-m depth contour within the U.S. EEZ. The survey employed the double-platform methodology searching with 25x bighye binoculars. A total of 4,445 km of tracklines was surveyed, yielding 290 cetacean sightings. The majority of sightings occurred along the continental shelf break with generally lower sighting rates over the continental slope. Estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009).

<table>
<thead>
<tr>
<th>Month, year, and area covered during each abundance survey, and resulting abundance estimate (N_{sea}) and coefficient of variation (CV).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1. Summary of abundance estimates for the western North Atlantic sperm whale (Physeter macrocephalus).</td>
</tr>
</tbody>
</table>

64
<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{best}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun–Aug 2011</td>
<td>Central Virginia to lower Bay of Fundy</td>
<td>1,593</td>
<td>0.36</td>
</tr>
<tr>
<td>Jun-Aug 2011</td>
<td>Central Florida to Central Virginia</td>
<td>695</td>
<td>0.39</td>
</tr>
<tr>
<td>Jun-Aug 2011</td>
<td>Central Florida to lower Bay of Fundy (COMBINED)</td>
<td>2,288</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for sperm whales is 2,288 (CV=0.28). The minimum population estimate for the western North Atlantic sperm whale is 1,815.

Current Population Trend

A trend analysis has not been conducted for this stock. The statistical power to detect a trend in abundance for this stock is poor due to the relatively imprecise abundance estimates and long survey interval. For example, the power to detect a precipitous decline in abundance (i.e., 50% decrease in 15 years) with estimates of low precision (e.g., CV > 0.30) remains below 80% (alpha = 0.30) unless surveys are conducted on an annual basis (Taylor et al. 2007).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. While more is probably known about sperm whale life history in other regions, some life history and vital rates information is available for the northwest Atlantic. These include: calving interval is 4-6 years; lactation period is 24 months; gestation period is 14.5-16.5 months; births occur mainly in July to November; length at birth is 4.0 m; length at sexual maturity 11.0-12.5 m for males and 8.3-9.2 m for females; mean age at sexual maturity is 19 years for males and 9 years for females; and mean age at physical maturity is 45 years for males and 30 years for females (Best 1974; Best et al. 1984; Lockyer 1981; Rice 1989).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 1,815. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.10 because the sperm whale is listed as endangered under the Endangered Species Act (ESA). PBR for the western North Atlantic sperm whale is 3.6.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

During 2008–2012, annual average human caused mortality was 0.8 due to reports of one sperm whale mortality in 2009 and one in 2010 in the Canadian Labrador halibut longline fishery (J. Lawson, DFO, pers. comm.), one entanglement mortality in Canadian pot/trap gear, and one vessel strike mortality (Table 2; NMFS unpublished data). A sperm whale was reported entangled in monkfish net on the Canadian Grand Banks in 2011, but was released alive and gear free (Ledwell and Huntington, 2012). Sperm whales have not been documented as bycatch in the observed U.S. Atlantic commercial fisheries.

New Serious Injury Guidelines

NMFS updated its serious injury designation and reporting process, which uses guidance from previous serious injury workshops, expert opinion, and analysis of historic injury cases to develop new criteria for distinguishing serious from non-serious injury (Angliss and DeMaster 1998; Andersen et al. 2008; NOAA 2012). NMFS defines
serious injury as an “injury that is more likely than not to result in mortality”. All injury determinations for this stock assessment were performed under the new guidelines. The new process involves proration of serious injury determinations where there is uncertainty regarding the severity or cause.

Fishery Information

Detailed fishery information is reported in Appendix III.

<table>
<thead>
<tr>
<th>Date</th>
<th>Injury Determination</th>
<th>ID</th>
<th>Location</th>
<th>Assigned Cause</th>
<th>Value against PBR</th>
<th>Country</th>
<th>Gear Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Mortality</td>
<td>EN</td>
<td>Sept-Iles, Quebec</td>
<td>EN</td>
<td>1</td>
<td>CN</td>
<td>PL</td>
</tr>
<tr>
<td>2010</td>
<td>Mortality</td>
<td>EN</td>
<td>Deerfield Beach, FL</td>
<td>VS</td>
<td>1</td>
<td>CN</td>
<td>XU</td>
</tr>
<tr>
<td>6/9/2009</td>
<td>Mortality</td>
<td>Tryphon</td>
<td>Enfield, Deerfield Beach, FL</td>
<td>VS</td>
<td>1</td>
<td>CN</td>
<td>PT</td>
</tr>
<tr>
<td>12/16/2012</td>
<td>Mortality</td>
<td>Shipstrike (US/CN/XU/XC)</td>
<td>0.20 (0.00/ 0.00/ 0.20/ 0.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Five-year totals</td>
<td>Entanglement (US/CN/XU/XC)</td>
<td>0.60 (0.00/ 0.60/ 0.00/ 0.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- a. The date sighted and location provided in the table are not necessarily when or where the serious injury or mortality occurred; rather, this information indicates when and where the whale was first reported beached, entangled, or injured.
- b. Mortality events are counted as 1 against PBR. Serious injury events have been evaluated using NMFS guidelines (NOAA 2012)
- c. CN=Canada, US=United States, XC=Unassigned 1st sight in CN, XU=Unassigned 1st sight in US
- d. H=hook, GN=gillnet, GU=gear unidentifiable, MF=monofilament, NP=none present, NR=none recovered/received, PL=pelagic longline, PT=pot/trap, WE=weir

Other Mortality

Four hundred twenty-four sperm whales were harvested in the Newfoundland-Labrador area between 1904 and 1972 and 109 male and no female sperm whales were taken near Nova Scotia in 1964-1972 (Mitchell and Kozicki 1984) in a Canadian whaling fishery. There was also a well-documented sperm whale fishery based on the west coast of Iceland. Other sperm whale catches occurred near West Greenland, the Azores, Madeira, Spain, Spanish Morocco, Norway (coastal and pelagic), the Faroes, and Britain. At present, because of their general offshore distribution, sperm whales are less likely to be impacted by humans and those impacts that do occur are less likely to be recorded. There has been no complete analysis and reporting of existing data on this topic for the western North Atlantic.

During 1994–2006, 37 sperm whale strandings have been documented along the U.S. Atlantic coast including Puerto Rico and the EEZ (NMFS unpublished data). One 1998 and one 2000 stranding off Florida showed signs of human interactions. The 1998 animal’s head was severed, but it is unknown if it occurred pre- or post-mortem. The 2000 animal had fishing gear in the blowhole. In October 1999, a live sperm whale calf stranded on eastern Long Island, and was subsequently euthanized. Also, a dead calf was found in the surf off Florida in 2000.

During 2008–2014, 14 sperm whale strandings were documented along the U.S. Atlantic coast within the EEZ according to the NER and SER strandings databases (Table 3). The 2012 Maine stranding mortality was classified as a human (fishery) interaction, though was not included in Table 3 because entanglement injuries were old and
healed and cause of death was not determined.

Table 3. Sperm whale (Physeter macrocephalus) reported strandings along the U.S. and Canada Atlantic coast 2008–2012.

<table>
<thead>
<tr>
<th>Stranding State</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newfoundland/Labradora</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Maine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>New York</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Virginia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>North Carolina</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>South Carolina</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Florida</td>
<td>1</td>
<td>0</td>
<td>1b</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL U.S.</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>14</td>
</tr>
</tbody>
</table>

a. Data provided by Whale Release and Strandings, Tangly Whales Inc. Newfoundland, Canada
b. Young sperm whale swimming in the Miami Beach Marina eluded euthanasia attempts.

In eastern Canada, 6 dead strandings were reported in Newfoundland/Labrador in 1987-2005; 20 dead strandings along Nova Scotia in 1988-2005; 9 dead strandings on Prince Edward Island in 1988-2005; 2 dead strandings in Quebec in 1992; 5 dead strandings in New Brunswick in 2005; and 13 animals in 8 stranding events on Sable Island, Nova Scotia in 1970-1998 (Reeves and Whitehead 1997; Hooker et al. 1997; Lucas and Hooker 2000). Sex was recorded for 11 of the 13 Sable Island animals, and all were male, which is consistent with sperm whale distribution patterns (Lucas and Hooker 2000).

Mass strandings have been reported in many oceanic regions (Rice et al. 1986; Kompanje and Reumer 1995; Evans et al. 2002; Fujiwara et al. 2007; Pierce et al. 2007; Mazzariol et al. 2011). Reasons for the strandings are unknown, although multiple causes (e.g., topography, changes in geomagnetic field, solar cycles, ship strikes, global changes in water temperature and prey distribution, and pollution) have been suggested (Kirschvink et al. 1986; Brabyn and Frew 1994; Holsbeek et al. 1999; Mazzariol et al. 2011).

Ship strikes are another source of human-caused mortality (McGillivary et al. 2009; Carrillo and Ritter 2010). In May 1994 a ship-struck sperm whale was observed south of Nova Scotia (Reeves and Whitehead 1997), in May 2000 a merchant ship reported a strike in Block Canyon, and in 2001 the U.S. Navy reported a ship strike within the EEZ (NMFS, unpublished data). In 2006, a sperm whale was found dead from ship strike wounds off Portland, Maine. In spring, the Block Canyon region is part of a major pathway for sperm whales entering southern New England continental shelf waters in pursuit of migrating squid (CETAP 1982; Scott and Sadove 1997). A 2012 Florida stranding mortality was classified as a vessel strike mortality (Table 3:).

STATUS OF STOCK

This is a strategic stock because the species is listed as endangered under the ESA. Total U.S. fishery-related mortality and serious injury for this stock is less than 10% of the calculated PBR, and therefore can be considered to be insignificant and approaching a zero mortality and serious injury rate. The status of this stock relative to OSP in U.S. Atlantic EEZ is unknown. There are insufficient data to determine population trends. The current stock abundance estimate was based upon a small portion of the known stock range. A Recovery Plan for sperm whales was finalized in 2010 (NMFS 2010).

REFERENCES CITED

