ATLANTIC SPOTTED DOLPHIN (Stenella frontalis):
Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Atlantic spotted dolphins are distributed in tropical and warm temperate waters of the western North Atlantic (Leatherwood et al. 1976). Their distribution ranges from southern New England, south through the Gulf of Mexico and the Caribbean to Venezuela (Leatherwood et al. 1976; Perrin et al. 1994). Atlantic spotted dolphins regularly occur in continental shelf waters south of Cape Hatteras and in continental shelf edge and continental slope waters north of this region (Figure 1; Payne et al. 1984; Mullin and Fulling 2003). Sightings have also been made along the north wall of the Gulf Stream and warm-core ring features (Waring et al. 1992).

There are two species of spotted dolphin in the Atlantic Ocean, the Atlantic spotted dolphin, Stenella frontalis, and the pantropical spotted dolphin, S. attenuata (Perrin et al. 1987). The Atlantic spotted dolphin occurs in two forms or ecotypes, which may be distinct sub-species (Perrin et al. 1987, 1994; Rice 1998): the large, heavily spotted form that inhabits the continental shelf and is usually found inside or near the 200 m isobath; and the smaller, less spotted island and offshore form which occurs in the Atlantic Ocean but is not known to occur in the Gulf of Mexico (Fulling et al. 2003; Mullin and Fulling 2003; Mullin and Fulling 2004). Where they co-occur, the offshore ecotype of the Atlantic spotted dolphin and the pantropical spotted dolphin can be difficult to differentiate at sea.

A genetic analysis of mtDNA and microsatellite DNA data from samples collected in the Gulf of Mexico and the western North Atlantic revealed significant genetic differentiation between these areas (Adams and Rosel 2006). In addition, the genetic data provided evidence for separation of dolphins within the western North Atlantic into two stocks with a provisional point of differentiation near Cape Hatteras, North Carolina (Adams and Rosel 2006). These two genetically differentiated groups are not yet recognized as distinct stocks pending ongoing analyses, and therefore are treated as one western North Atlantic stock for the remainder of this assessment.

POPULATION SIZE

The best abundance estimate available for Atlantic spotted dolphins in the western North Atlantic is 44,715 (CV=0.43; Table 1). This estimate is from summer 2011 surveys covering waters from central Florida to the lower Bay of Fundy. The two spotted dolphin species in the Atlantic can be difficult to distinguish at sea, and in fact hybrids between the two species have been documented in this area (Kingston et al. 2009). As a result, prior to 1999, the reported abundance estimates were of both species combined. More recent effort has shown that in the waters south of Cape Hatteras identification to species can confidently be made. Furthermore, distinction between the two Atlantic spotted dolphin ecotypes has not regularly

Figure 1. Distribution of Atlantic spotted dolphin sightings from NEFSC and SEFSC shipboard and aerial surveys during the summer in 1998, 2004 and 2011. Isobaths are the 100-m, 1,000-m, and 4,000-m depth contours.
been made during surveys, and at their November 1999 meeting, the Atlantic SRG recommended that without a
genetic determination of stock structure for the two ecotypes, the abundance estimates for the coastal and offshore
forms should be combined. The abundance estimate provided here is a species-specific estimate combining both
ecotypes of Atlantic spotted dolphins.

Earlier abundance estimates

Please see Appendix IV for a summary of abundance estimates, including earlier estimates and survey
descriptions.

Recent surveys and abundance estimates

An abundance estimate of 26,798 (CV=0.66) Atlantic spotted dolphins was generated from aerial and shipboard
surveys conducted during June-August 2011 between central Virginia and the lower Bay of Fundy. The aerial
portion covered 6,850 km of tracklines over waters north of New Jersey between the coastline and the 100-m depth
contour through the U.S. and Canadian Gulf of Maine, and up to and including the lower Bay of Fundy. The
shipboard portion covered 3,811 km of tracklines between central Virginia and Massachusetts in waters deeper than
the 100-m depth contour out to beyond the U.S. EEZ. Both sighting platforms used a double-platform data
collection procedure, which allows estimation of abundance corrected for perception bias of the detected species
(Laake and Borchers 2004). Estimation of the abundance was based on the independent observer approach assuming
point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in
the computer program Distance (version 6.0, release 2, Thomas et al. 2009).

An abundance estimate of 17,917 (CV=0.42) Atlantic spotted dolphins was generated from a shipboard survey
conducted concurrently (June-August 2011) in waters between central Virginia and central Florida. This shipboard
survey included shelf-break and inner continental slope waters deeper than the 50-m depth contour within the U.S.
EEZ. The survey employed two independent visual teams searching with 25x bigeye binoculars. A total of 4,445 km
of tracklines were surveyed, yielding 290 cetacean sightings. The majority of sightings occurred along the
continental shelf break with generally lower sighting rates over the continental slope. Estimation of the abundance
was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and
calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release
2, Thomas et al. 2009).

**Table 1. Summary of abundance estimates for the western North Atlantic spotted dolphins, *Stenella frontalis*,
by month, year, and area covered during each abundance survey, and resulting abundance estimate (N_{best})
and coefficient of variation (CV).**

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{best}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun-Aug 2004</td>
<td>Maryland to the Bay of Fundy</td>
<td>3,578</td>
<td>0.48</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Maryland</td>
<td>47,400</td>
<td>0.45</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Bay of Fundy (COMBINED)</td>
<td>50,978</td>
<td>0.42</td>
</tr>
<tr>
<td>Jun-Aug 2011</td>
<td>central Virginia to lower Bay of Fundy</td>
<td>26,798</td>
<td>0.66</td>
</tr>
<tr>
<td>Jun-Aug 2011</td>
<td>central Florida to central Virginia</td>
<td>17,917</td>
<td>0.42</td>
</tr>
<tr>
<td>Jun-Aug 2011</td>
<td>central Florida to lower Bay of Fundy (COMBINED)</td>
<td>44,715</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-
normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution
as specified by Wade and Angliss (1997). The best abundance estimate is 44,715 (CV=0.43). The minimum
population estimates based on the 2011 abundance estimates is 31,610.

Current Population Trend

A trend analysis has not been conducted for this stock. The statistical power to detect a trend in abundance for
this stock is poor due to the relatively imprecise abundance estimates and long survey interval. For example, the
power to detect a precipitous decline in abundance (i.e., 50% decrease in 15 years) with estimates of low precision
(e.g., CV > 0.30) remains below 80% (alpha = 0.30) unless surveys are conducted on an annual basis (Taylor et al. 2007).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for the Atlantic spotted dolphin is 31,610. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is set to 0.5 because this stock is of unknown status. PBR for the combined offshore and coastal forms of Atlantic spotted dolphins is 316.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Total annual estimated fishery-related mortality and serious injury to this stock during 2007-2011 was zero, as there were no reports of mortalities or serious injury to Atlantic spotted dolphins.

New Serious Injury Guidelines

NMFS updated its serious injury designation and reporting process, which uses guidance from previous serious injury workshops, expert opinion, and analysis of historic injury cases to develop new criteria for distinguishing serious from non-serious injury (Angliss and DeMaster 1998; Andersen et al. 2008; NOAA 2012). NMFS defines serious injury as an “injury that is more likely than not to result in mortality”. Injury determinations for stock assessments revised in 2013 or later incorporate the new serious injury guidelines, based on the most recent 5-year period for which data are available.

Fishery Information

Detailed fishery information is reported in Appendix III. Total fishery-related mortality and serious injury cannot be estimated separately for the two species of spotted dolphins in the U.S. Atlantic EEZ because of the uncertainty in species identification by fishery observers. The Atlantic Scientific Review Group advised adopting the risk-averse strategy of assuming that either species might have been subject to the observed fishery-related mortality and serious injury.

Earlier Interactions

No spotted dolphin mortalities were observed in 1977-1991 foreign fishing activities. Bycatch had been observed in the pelagic drift gillnet and pelagic longline fisheries, but no mortalities or serious injuries have been documented in the pelagic pair trawl, Northeast sink gillnet, mid-Atlantic coastal gillnet, and North Atlantic bottom trawl fisheries. No takes have been documented in a review of Canadian gillnet and trap fisheries (Read 1994).

Forty-nine undifferentiated spotted dolphin mortalities were observed in the drift gillnet fishery between 1989 and 1998 and occurred northeast of Cape Hatteras within the 183m isobath in February-April and near Lydonia Canyon in October. Six whole animal carcasses sent to the Smithsonian were identified as pantropical spotted dolphins (S. attenuata). The remaining animals were not identified to species. Estimated annual mortality and serious injury attributable to this fishery (CV in parentheses) was 25 in 1989 (.65), 51 in 1990 (.49), 11 in 1991 (.41), 20 in 1992 (0.18), 8.4 in 1993 (0.40), 29 in 1994 (0.01), 0 in 1995, 2 in 1996 (0.06), no fishery in 1997 and 0 in 1998.

Pelagic Longline

There were no observed mortalities or serious injuries to spotted dolphins by this fishery in the Atlantic Ocean during 2007-2011 (Fairfield and Garrison 2008; Garrison et al. 2009; Garrison and Stokes 2010; 2012a; 2012b). Between 1992 and 2006, 2 spotted dolphins (recorded as Atlantic spotted dolphins) were hooked and released alive in the pelagic longline fishery in the Atlantic, including one dolphin hooked and released alive with serious injuries in 2003 (in the mid-Atlantic Bight fishing area), and one dolphin was released alive without serious injuries in 2005 (in the Sargasso fishing area) (Garrison and Richards 2004; Fairfield-Walsh and Garrison 2006.). The estimated
fishery-related mortality to Atlantic spotted dolphins in the U.S. Atlantic (excluding the Gulf of Mexico) attributable to this fishery between 2001-2005 was 6 (CV=1) (Garrison 2003, 2005; Garrison and Richards 2004; Fairfield-Walsh and Garrison 2006).

Other Mortality

During 2007-2011, 19 Atlantic spotted dolphins were reported stranded between New York and Florida (Table 2; NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 13 September 2012 (SER) and 9 November 2012 (NER)). One of these strandings had documented signs of human interactions—a Florida 2007 mortality with extensive propeller wounds.

Stranding data probably underestimate the extent of human-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other human-interactions. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of human interaction.

Table 2. Atlantic spotted dolphin (Stenella frontalis) reported strandings along the U.S. Atlantic coast, 2007-2011.

<table>
<thead>
<tr>
<th>STATE</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>New Jersey</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Virginia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>North Carolina</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Georgia</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Florida*a</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>TOTALS</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>19</td>
</tr>
</tbody>
</table>

*a One of the 2007 Florida animals was classified as a boat strike.

STATUS OF STOCK

Atlantic spotted dolphins are not listed as threatened or endangered under the Endangered Species Act, and the Western North Atlantic stock is not considered strategic under the Marine Mammal Protection Act. No fishery-related mortality or serious injury has been observed during recent years; therefore, total fishery-related mortality and serious injury can be considered insignificant and approaching the zero mortality and serious injury rate. The status of Atlantic spotted dolphins in the U.S. Atlantic EEZ relative to OSP is unknown. There are insufficient data to determine the population trends for this species.

REFERENCES

