ATLANTIC SPOTTED DOLPHIN (*Stenella frontalis*): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are 2 species of spotted dolphin in the Atlantic Ocean, the Atlantic spotted dolphin (*Stenella frontalis*) and the pantropical spotted dolphin (*S. attenuata*) (Perrin et al. 1987). The Atlantic spotted dolphin occurs in 2 forms which may be distinct sub-species (Perrin et al. 1987; Perrin et al. 1994; Rice 1998): the large, heavily spotted form which inhabits the continental shelf and is usually found inside or near the 200-m isobath; and the smaller, less spotted island and offshore form which occurs in the Atlantic Ocean but is not known to occur in the Gulf of Mexico (Fulling et al. 2003; Mullin and Fulling 2003; Mullin and Fulling 2004). Where they co-occur, the offshore form of the Atlantic spotted dolphin and the pantropical spotted dolphin can be difficult to differentiate at sea.

The Atlantic spotted dolphin is endemic to the Atlantic Ocean in temperate to tropical waters (Perrin et al. 1987; Perrin et al. 1994). In the Gulf of Mexico, Atlantic spotted dolphins occur primarily from continental shelf waters 10-200 m deep to slope waters <500 m deep (Figure 1; Fulling et al. 2003; Mullin and Fulling 2004; Maze-Foley and Mullin 2006). Atlantic spotted dolphins were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico (i.e., U.S. Gulf of Mexico) from 1992 to 1998 (Hansen et al. 1996; Mullin and Hoggard 2000). It has been suggested that this species may move inshore seasonally during spring, but data supporting this hypothesis are limited (Caldwell and Caldwell 1966; Fritts et al. 1983).

The Gulf of Mexico population is being considered a separate stock for management purposes. In a recent study, Adams and Rosel (2005) presented strong genetic support for differentiation between Gulf of Mexico and western North Atlantic management stocks using both mitochondrial and nuclear markers. However, this study did not test for further population subdivision within the Gulf of Mexico.

POPULATION SIZE

The current population size for the Atlantic spotted dolphin in the northern Gulf of Mexico is unknown because the survey data from the continental shelf that covers the majority of this stock’s range are more than 8 years old (Wade and Angliss 1997).

Earlier abundance estimates

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted in conjunction with bluefin tuna ichthyoplankton surveys during spring in the northern Gulf of Mexico from the 200m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Annual cetacean surveys were conducted along a fixed plankton sampling trackline. Survey effort-weighted estimated average abundance of Atlantic spotted dolphins for all surveys combined was 3,213 (CV=0.44) (Hansen et al. 1995). This is an underestimate because the continental shelf was not entirely covered during these surveys.

Data were collected from 1996 to 2001 during spring and fall plankton surveys conducted from NOAA ships.
Oregon II (1996, 1997, 1999, 2000) and Gordon Gunter (1998, 1999, 2000, 2001). Tracklines, which were perpendicular to the bathymetry, covered shelf waters from the 20-m to the 200-m isobaths in the fall of 1998 through 2001. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates using data older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations. The estimated abundance of Atlantic spotted dolphins, pooled from 2000 through 2001, for the fall outer continental shelf shipboard surveys was 37,611 (CV=0.28) (Figure 1; Table 1: see Fulling et al. 2003). Spring surveys were conducted from April to May 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico from 200 m to the offshore extent of the U.S. EEZ. Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate for both areas. The estimate of abundance for Atlantic spotted dolphins in oceanic waters, pooled from 1996 through 2001, was 175 (CV=0.84) (Mullin and Fulling 2004).

Recent surveys and abundance estimates

During summer 2003 and spring 2004, line-transect surveys dedicated to estimating the abundance of oceanic cetaceans were conducted in the northern Gulf of Mexico. During each year, a grid of uniformly-spaced transect lines from a random start were surveyed from the 200-m isobath to the seaward extend of the U.S. EEZ using NOAA Ship Gordon Gunter (Mullin 2007). The estimate of abundance for Atlantic spotted dolphins in oceanic waters, pooled from 2003 to 2004, was 0 (Mullin 2007). Because most of the data for oceanic estimates prior to 2003 were older than the 8-year limit and due to the different sampling strategies, estimates from the 2003 and 2004 surveys were considered most reliable for oceanic waters.

The previous abundance estimate for the Atlantic spotted dolphin in the northern Gulf of Mexico was the combined estimate of abundance for both the outer continental shelf (fall surveys, 2000-2001) and oceanic waters (spring and summer surveys, 2003-2004), which was 37,611 (CV=0.28) (Table 1). Because data from the continental shelf portion of this estimate are more than 8 years old, the current best population estimate is unknown.

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{best}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2000-2001</td>
<td>Outer Continental Shelf</td>
<td>37,611</td>
<td>0.28</td>
</tr>
<tr>
<td>Spring/Summer 2003-2004</td>
<td>Oceanic</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Fall & Spring/Summer</td>
<td>OCS & Oceanic</td>
<td>37,611</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The current minimum population estimate is unknown. The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997).

Current Population Trend

There are insufficient data to determine the population trend for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is currently undetermined. PBR is the product of the minimum population size, one half the maximum net productivity rate and a “recovery” factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum
sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of an Atlantic spotted dolphin during 1998-2007 (Yeung 1999; 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008). One mortality occurred during 2006 off Ft. Myers, Florida, when a dolphin was captured during sea turtle relocation trawling activities. As part of its annual coastal dredging program, the Army Corps of Engineers conducts sea turtle relocation trawling during hopper dredging as a protective measure for marine turtles.

Fisheries Information

The level of past or current, direct, human-caused mortality of Atlantic spotted dolphins in the northern Gulf of Mexico is unknown; however, interactions between spotted dolphins and fisheries have been observed in the northern Gulf of Mexico. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the northern Gulf of Mexico. There were 2 observed incidental takes and releases of spotted dolphins in the northern Gulf of Mexico during 1994, but no recent reported takes of Atlantic spotted dolphins by this fishery. Either spotted dolphin species may have been involved in the observed fishery-related mortality and serious injury incidents, but because of the uncertainty in species identification by fishery observers, they cannot currently be separated. Estimated average annual fishing-related mortality and serious injury of spotted dolphins attributable to this fishery during 1991-1993 was 1.5 annually (CV=0.33). A voluntary observer program for the shrimp trawl fishery began in 1992 and became mandatory in 2007. During 1992-2007 the shrimp trawl fishery observer program recorded 6 unidentified dolphins caught in a lazy line or turtle excluder device, and 1 or more of these animals may have been an Atlantic spotted dolphin. In 2 of the 6 cases, an observer report indicated the animal may have already been decomposed, but this could not be confirmed in the absence of a necropsy.

Other Mortality

A total of 25 Atlantic spotted dolphins stranded in the Gulf of Mexico during 1999-2007 (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 16 September 2008; Table 2 displays 2003-2007 data). Evidence of human interactions was detected for 2 animals that stranded in Alabama during 2004, both of which were classified as likely caused by fishery interactions. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

In 1992, with the enactment of the Marine Mammal Health and Stranding Response Act, the Working Group on Marine Mammal Unusual Mortality Events was created to determine when an unusual mortality event (UME) is occurring, and then to direct responses to such events. Since 1992, 8 UMEs have been declared in the Gulf of Mexico, and 2 of these included Atlantic spotted dolphins. Between August 1999 and May 2000, 152 bottlenose dolphins died coincident with *Karenia brevis* blooms and fish kills in the Florida Panhandle. Additional strandings included 3 Atlantic spotted dolphins, 1 Risso’s dolphin, *Grampus griseus*, 2 Blainville’s beaked whales, *Mesoplodon densirostris*, and 4 unidentified dolphins. In 2005, a particularly destructive red tide (*K. brevis*) bloom occurred off of central west Florida. Manatee, sea turtle, bird and fish mortalities were reported in the area in early 2005 and a manatee UME had been declared. Bottlenose dolphin mortalities began to rise above the historical averages by late July 2005, continued to increase through October 2005, and were then declared to be part of a multi-species UME. The multi-species UME extended into 2006, and ended in November 2006. A total of 190 dolphins were involved, primarily bottlenose dolphins plus strandings of 1 Atlantic spotted dolphin and 24 unidentified dolphins. The evidence suggests the effects of a red tide bloom contributed to the cause of this event.
Table 2. Atlantic spotted dolphin (*Stenella frontalis*) strandings along the northern Gulf of Mexico coast, 2003-2007.

<table>
<thead>
<tr>
<th>STATE</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Florida</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Louisiana</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mississippi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Texas</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>20</td>
</tr>
</tbody>
</table>

STATUS OF STOCK

The status of Atlantic spotted dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. Total human-caused mortality and serious injury for this stock is not known. There is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. Despite an undetermined PBR and unknown population size, this is not a strategic stock because previous estimates of population size have been large compared to the number of cases of documented human-related mortality and serious injury.

REFERENCES CITED

