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Appendix B1. Invertebrate Subcommittee meetings and participants 
 

The Invertebrate Subcommittee met March 17-21, April 21-25, May 27-30, June 6, June 
18 and June 23 during 2014 while preparing the SARC-59 stock assessment for Atlantic sea 
scallops.  Meetings during March-May were held in the Stephen H. Clark Conference Room at 
the Northeast Fisheries Science Center in Woods Hole, MA with some participation by video 
conference.  Meetings in June were exclusively by video conference.   The following members 
participated in one or more meetings. 
Larry Jacobson, NEFSC, chair 
Dvora Hart, NEFSC, Assessment Team Lead  
Burton Shank, NEFSC 
Jia-Han Chang, NEFSC 
Jiashen Tang, NEFSC 
Toni Chute, NEFSC 
Vic Nordahl, NEFSC 
Chris Legault, NEFSC 
Dan Hennen, NEFSC 
Mark Terciero, NEFSC 
Kevin Friedland, NEFSC 
Paul Rago, NEFSC 
Stephen Smith, DFO, Canada 
Mary Beth Tooley, NEFMC 
Dierdre Boelke, NEFMC 
David Rudders, VIMS 
Bill DuPaul, VIMS 
Carl Huntsberger, Coonamesset Farm Foundation 
Ron Smolowitz, Coonamesset Farm Foundation 
Katherine Thompson, Coonamesset Farm Foundation 
Daphne Munroe, Rutgers U. 
Kevin Stokesbury, SMAST 
Gregory DeCelles, SMAST 
Susan Inglis, SMAST 
Karen Bolles, HabCam Group 
Richard Taylor, HabCam Group 
Trish DeGraaf, Maine DMR 
Kevin Kelly, Maine DMR 
Matt Camisa, Massachusetts DMR 
Sam Truesdell, University of Maine
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Appendix B2. Sea Scallop Discard Estimates 
 

Jessica Blaylock (NEFSC, Woods Hole, MA) 
 

This paper presents discard estimates for Atlantic sea scallop (Placopecten 
magellanicus) for scallop dredge, scallop trawl and otter trawl fleets, calculated using the 
Standardized Bycatch Reporting Methodology (Wigley et al. 2007).  This approach was 
also used in the previous assessment for this stock; however discard estimates were not 
included as input in the assessment model (NEFSC 2010). 

 
Methods 

Estimates of Atlantic sea scallop discards (mt meats) were derived for seven fleets 
using Northeast Fishery Observer Program (NEFOP) and Northeast Fishery Science 
Center (NEFSC) commercial landings (i.e., dealer) data for the 1989 to 2013 time period: 
Georges Bank and Mid-Atlantic Bight scallop dredge, Mid-Atlantic Bight scallop trawl, 
Georges Bank and Mid-Atlantic Bight small-mesh otter trawl, and Georges Bank and 
Mid-Atlantic Bight large-mesh otter trawl.  Additionally, sea scallop discard estimates 
were also derived for scallop dredge fleets at a finer stratification level using NEFOP and 
Vessel Trip Report (VTR) data for the 1994 to 2013 time period.  This analysis considered 
the two scallop dredge fleets above as four fleets: Georges Bank open and closed scallop 
dredge, and Mid-Atlantic Bight open and closed scallop dredge, 

A broad stratification scheme was used with trips partitioned into fleets using the 
following four classification variables: calendar quarter, gear type, area fished, and mesh.  
Trips were not partitioned by trip category ('limited' versus 'general', for scallop dredge 
and scallop trawl) due to small sample size over the time series.  Calendar quarter was 
based on landed date and used to capture seasonal variations in fishing activity. Gear type 
was based on Northeast gear codes (scallop dredge: negear 132; scallop trawl: negear 052; 
otter trawl: negear 050).  Trips for which gear was unknown were excluded.  Two broad 
geographical regions are defined for area fished based on statistical area: areas 520-562 
constituted the Georges Bank (GBK) area, and areas 600 and above constituted the Mid-
Atlantic Bight (MAB) area.  Two mesh size groups were formed for otter trawl: small 
(mesh less than 5.5 inches) and large (5.5 inch mesh and greater).  The additional analysis 
considering scallop dredge at a finer scale included access area as another classification 
variable.  Here, two access area categories were used: ‘open’ and ‘closed’, where ‘closed’ 
includes all trips fishing in one of the scallop access areas (Closed Area I, Closed Area II 
and Nantucket Lightship in the GBK region; Hudson Canyon, Virginia Beach, Elephant 
Trunk, and Delmarva in the MAB region).  Observer trips were assigned to the access area 
category based on program code, and VTR trips were assigned based on latitude and 
longitude.  

Discards were estimated using a combined d/kall ratio estimator (Cochran 1963), 
where d is discarded pounds of sea scallops and kall is kept pounds of all species, 
calculated from NEFOP data.  Discard weight was derived by multiplying the d/ kall ratio 
of each fleet by the corresponding dealer or VTR landings (Wigley et al. 2007).  
Coefficients of variation (CV) were calculated as the ratio of the standard error of the 
discards divided by the discards. 

In cases where limited observer data were available (i.e. two or less observed trips 
in a calendar quarter), an imputation approach was used to 'fill in' the missing (or 
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incomplete) information using data from adjoining strata.  In this imputation procedure, 
the temporal stratification (i.e., calendar quarter) was relaxed to entire year, recognizing 
that seasonal variations may occur that will thus not be accounted for.  Numbers of annual 
observed trips by fleet are summarized in Tables 1 and 2.    

To evaluate the proportion of estimated sea scallop discards to landings, the sum of 
the current discard estimates for scallop dredge was compared to the sum of estimated 
landings from Georges Bank, Southern New England, and Mid-Atlantic Bight for the 
1992 to 2013 time period.  

 
Results and Discussion 

Annual Atlantic sea scallop discard estimates by fleet are presented in Tables 1, 2, 
and 3.  Tables 1A-1D show estimates for the seven fleets without access area 
classification: Georges Bank and Mid-Atlantic Bight scallop dredge, Mid-Atlantic Bight 
scallop trawl, Georges Bank and Mid-Atlantic Bight small-mesh otter trawl, and Georges 
Bank and Mid-Atlantic Bight large-mesh otter trawl.  Tables 2A-2B present discard 
estimates for the scallop dredge fleets at a finer scale that includes access area as a 
classification variable. 

This analysis indicates that during the 1989 to 2013 time period, sea scallops were 
primarily discarded in the scallop dredge fleets (Tables 1A-1D, Table 3, Figure 1). For 
2013, estimated discards from the Georges Bank and Mid-Atlantic Bight scallop dredge 
were 299 and 128 mt meats, respectively.  Discard estimates for the other five fleets for 
the same year ranged from less than 1 mt meats (Georges Bank small-mesh otter trawl) to 
10 mt meats (Mid-Atlantic Bight scallop trawl).   

Discard estimates for scallop dredge at the access area classification level (Tables 
2A-2B) suggest a higher discarding rate in the ‘open’ category fleets.  For 2013, estimated 
discards from the Georges Bank open and closed scallop dredge fleets were 370 and 8 mt 
meats, respectively.  Estimated discards from the Mid-Atlantic Bight open scallop dredge 
fleet were 46 mt meats; discards could not be estimated for 2013 for the Mid-Atlantic 
Bight closed scallop dredge fleet due to VTR trip misclassification.  

The discard estimation presented here used a broad stratification approach.  In 
addition, there are inherent limitations in the use of VTR data for trip assignment to the 
‘access area’ category because of missing or inaccurate position data.  Consequently, the 
discard estimates from scallop dredge at the access area classification level should be 
considered as preliminary. 

Current estimates of discards and landings from scallop dredge fleets for 1994 to 
2013 are presented in Figure 2.  Total catch (discards plus landings) averaged 6,814 mt 
meats between 1993 and 1998.  Catch increased in the following six years to peak at 
31,435 mt meats in 2004, and averaged 26,560 mt meats from 2005 to 2012.  Total catch 
in 2013 was 18,516 mt meats.  Discards generally represent a small portion of total catch, 
with discard-to-landing ratios ranging from 0.010 in 1997 and 1998 to 0.1233 in 2000.   

These results represent estimated sea scallop discards and landings in weight (mt 
meats).  It is likely that discard-to-landing ratios of numbers would be higher because of 
the different size distribution of discarded scallops compared to that of landed scallops.  
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Table 1A.  Number of observed trips, sea scallop discards (mt meats) and coefficient of variation 
(CV) for the Georges Bank (GBK) scallop dredge and Mid-Atlantic Bight (MAB) scallop 
dredge fleets, 1989-2013.  Discards were not estimated prior to 1992 due to small sample 
size. 

 
 
 

  
 

 
 

  

YEAR Trips
Discards 

(mt meats) CV YEAR Trips
Discards 

(mt meats) CV
1989 1989
1990 1990
1991 1 1991 1
1992* 11 464 0.48 1992* 7 121 0.00
1993* 12 345 0.32 1993* 10 12 0.80
1994* 7 3 0.89 1994 16 576 0.54
1995* 6 22 0.62 1995* 20 322 0.28
1996 15 116 0.36 1996 23 24 0.71
1997* 11 46 0.73 1997* 18 8 1.14
1998* 9 4 0.57 1998* 16 48 0.66
1999* 63 141 0.28 1999* 8 8 0.56
2000* 228 989 0.09 2000 28 779 0.33
2001* 18 529 0.17 2001* 88 1,955 0.11
2002* 11 105 0.58 2002 87 1,894 0.13
2003* 14 328 0.58 2003 108 2,225 0.10
2004* 46 58 0.20 2004 235 2,446 0.09
2005 107 228 0.27 2005 220 357 0.19
2006 135 347 0.20 2006* 93 78 0.49
2007 180 231 0.21 2007 177 260 0.20
2008 216 334 0.14 2008 425 414 0.15
2009 81 380 0.26 2009 408 923 0.12
2010 98 668 0.18 2010 238 688 0.21
2011 141 668 0.18 2011 251 482 0.14
2012 222 603 0.11 2012 201 237 0.12
2013 269 299 0.14 2013 182 128 0.22
* Imputed data were used for discard estimation for these years.

GBK scallop dredge MAB scallop dredge



 

638 
59th SAW Assessment Report                           B. Sea Scallops-Appendix B2 

Table 1B.  Number of observed trips, sea scallop discards (mt meats) and coefficient of variation 
(CV) for the Mid-Atlantic Bight (MAB) scallop trawl fleet, 1989-2013.  Discards were not 
estimated prior to 2004 due to small sample size. 

 
 
 

  
 

 
  

YEAR Trips
Discards 

(mt meats) CV
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001 4
2002 1
2003
2004* 44 99 0.25
2005 137 61 0.13
2006* 30 150 0.33
2007 34 17 0.59
2008* 38 6 0.58
2009* 8 49 1.59
2010* 29 12 0.33
2011* 10 12 0.78
2012* 19 <1 0.75
2013* 20 10 0.35
* Imputed data were used for discard estimation for these years.

MAB scallop trawl
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Table 1C.  Number of observed trips, sea scallop discards (mt meats) and coefficient of variation 
(CV) for the Georges Bank (GBK) small-mesh otter trawl, and Mid-Atlantic Bight (MAB) 
small-mesh otter trawl fleets, 1989-2013.   
 
 
 

  
 
  

YEAR Trips
Discards 

(mt meats) CV YEAR Trips
Discards 

(mt meats) CV
1989 65 2 0.53 1989 34 213 0.39
1990 31 <1 1.22 1990 47 8 0.44
1991 68 <1 0.80 1991 78 11 2.05
1992 42 <1 0.68 1992 47 6 0.53
1993 25 <1 0.57 1993* 16 8 0.81
1994* 18 7 1.88 1994* 15 29 0.78
1995* 11 <1 1.26 1995 63 71 0.23
1996* 10 0 0.00 1996 80 14 1.70
1997* 20 <1 0.87 1997* 48 1 2.76
1998* 6 <1 1.39 1998* 32 4 1.35
1999* 8 <1 2.62 1999 35 12 1.65
2000* 17 <1 0.49 2000 39 2 0.94
2001* 15 <1 0.64 2001 55 <1 8.75
2002* 33 <1 0.82 2002 32 68 0.34
2003 55 <1 1.11 2003 74 17 0.80
2004 109 2 0.96 2004 257 5 0.42
2005 194 <1 0.47 2005 172 4 0.32
2006 62 <1 0.56 2006 151 13 2.63
2007 60 <1 1.44 2007 218 5 0.56
2008 50 <1 0.49 2008 152 8 0.42
2009 199 <1 0.50 2009 286 23 0.52
2010 217 <1 0.54 2010 361 16 0.48
2011 168 <1 0.49 2011 365 5 0.33
2012 130 <1 0.83 2012 226 3 0.61
2013 186 <1 0.45 2013 395 5 0.35
* Imputed data were used for discard estimation for these years.

MAB small-mesh  otter trawlGBK small-mesh otter trawl
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Table 1D.  Number of observed trips, sea scallop discards (mt meats) and coefficient of variation 
(CV) for the Georges Bank (GBK) large-mesh otter trawl, and Mid-Atlantic Bight (MAB) 
large-mesh otter trawl fleets, 1989-2013. Discards were not estimated for MAB large-
mesh otter trawl prior to 1992 due to small sample size.   

 
 
 

  
 

 
  

YEAR Trips
Discards 

(mt meats) CV YEAR Trips
Discards 

(mt meats) CV
1989 27 1 0.88 1989 4
1990 33 1 0.72 1990
1991 34 4 0.54 1991 4
1992 35 <1 1.10 1992* 14 4 0.40
1993 35 <1 1.30 1993* 12 3 1.54
1994 36 <1 1.21 1994* 21 99 0.53
1995 61 <1 0.36 1995 55 102 0.83
1996 38 <1 0.69 1996* 18 <1 0.62
1997 26 <1 1.00 1997* 9 1 0.62
1998* 10 <1 0.89 1998* 13 1 0.69
1999 20 <1 2.48 1999* 8 94 1.16
2000 30 2 0.66 2000* 26 32 0.57
2001 52 1 0.82 2001* 50 13 0.48
2002 83 2 0.61 2002* 39 8 2.36
2003 163 3 0.77 2003* 16 <1 2.26
2004 316 42 0.35 2004 109 9 0.43
2005 959 9 0.18 2005 93 1 0.94
2006 462 30 0.37 2006 71 3 2.39
2007 465 5 0.25 2007 160 12 0.59
2008 563 6 0.21 2008 132 29 0.88
2009 536 9 0.22 2009 167 19 0.22
2010 526 4 0.23 2010 274 9 0.73
2011 782 6 0.17 2011 253 9 1.00
2012 599 6 0.32 2012 169 4 0.78
2013 593 6 0.20 2013 251 7 0.53
* Imputed data were used for discard estimation for these years.

MAB large-mesh otter trawlGBK large-mesh otter trawl
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Table 2A.  Number of observed trips, sea scallop discards (mt meats) and coefficient of variation 
(CV) by the Georges Bank (GBK) open scallop dredge and GBK closed scallop dredge 
fleets, 1994-2013.  Discards were not estimated for the GBK open scallop dredge fleet in 
2000 and 2001 due to small sample size.   
 
 
 

 

YEAR Trips
Discards 

(mt meats) CV YEAR Trips
Discards 

(mt meats) CV
1994* 7 2 0.82 1994 n/a
1995* 6 23 0.63 1995 n/a
1996 15 103 0.37 1996 n/a
1997* 11 41 0.70 1997 n/a
1998* 9 4 0.57 1998 n/a
1999* 48 97 0.39 1999* 15 53 0.26
2000 2 2000 226 246 0.03
2001 2 2001 16 26 0.15
2002* 11 99 0.57 2002 n/a
2003* 14 324 0.58 2003 n/a
2004* 16 39 0.29 2004 30 25 0.19
2005 41 371 0.36 2005 66 40 0.27
2006* 56 783 0.25 2006 79 41 0.26
2007 53 194 0.30 2007 127 40 0.26
2008 73 202 0.23 2008 140 53 0.12
2009 58 295 0.33 2009* 23 24 0.30
2010 44 576 0.36 2010* 54 117 0.18
2011* 68 603 0.24 2011 71 84 0.20
2012 101 981 0.15 2012 119 48 0.11
2013 202 370 0.16 2013 30 8 0.07
* Imputed data were used for discard estimation for these years.
n/a: not applicable

GBK closed scallop dredgeGBK open scallop dredge
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Table 2B.  Number of observed trips, sea scallop discards (mt meats) and coefficient of variation 
(CV) by the Mid-Atlantic Bight (MAB) open scallop dredge and MAB closed scallop 
dredge fleets, 1994-2013.  Discards were not estimated for the MAB open scallop dredge 
fleet in 2001 due to small sample size. 

 
 

 

YEAR Trips
Discards 

(mt meats) CV YEAR Trips
Discards 

(mt meats) CV
1994 16 276 0.59 1994 n/a
1995* 20 341 0.28 1995 n/a
1996 23 22 0.72 1996 n/a
1997* 18 8 1.15 1997 n/a
1998* 16 42 0.66 1998 n/a
1999* 8 7 0.56 1999 n/a
2000 28 749 0.33 2000 n/a
2001 3 2001 85 301 0.09
2002* 13 1,446 0.19 2002 74 151 0.11
2003 62 2,253 0.14 2003 46 120 0.12
2004 143 1,869 0.13 2004 92 510 0.10
2005 166 368 0.29 2005 54 39 0.21
2006* 87 71 0.39 2006* 6 3 0.49
2007 84 65 0.41 2007 93 63 0.22
2008 89 215 0.54 2008 336 97 0.14
2009 118 597 0.15 2009 290 219 0.13
2010 130 583 0.30 2010 108 94 0.20
2011 145 489 0.20 2011 45 22 0.22
2012 100 143 0.20 2012^
2013 137 46 0.25 2013^
* Imputed data were used for discard estimation for these years.
 ̂no discard estimation because of VTR missclassification

n/a: not applicable

MAB open scallop dredge MAB closed scallop dredge
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Table 3.  Summary of sea scallop discard estimates (mt meats) from Table 1 by region, 1989-2013. 

 
 

YEAR
scallop 
dredge

small-mesh 
otter trawl

large-mesh 
otter trawl Total YEAR

scallop 
dredge

scallop 
trawl

small-mesh  
otter trawl

large-mesh 
otter trawl Total

1989 * 2 1 4 1989 * * 213 * 213
1990 * <1 1 1 1990 * * 8 * 8
1991 * <1 4 5 1991 * * 11 * 11
1992 464 <1 <1 465 1992 121 * 6 4 131
1993 345 <1 <1 346 1993 12 * 8 3 22
1994 3 7 <1 10 1994 576 * 29 99 703
1995 22 <1 <1 23 1995 322 * 71 102 495
1996 116 0 <1 116 1996 24 * 14 <1 38
1997 46 <1 <1 46 1997 8 * 1 1 11
1998 4 <1 <1 4 1998 48 * 4 1 53
1999 141 <1 <1 142 1999 8 * 12 94 114
2000 989 <1 2 991 2000 779 * 2 32 813
2001 529 <1 1 531 2001 1,955 * <1 13 1,969
2002 105 <1 2 107 2002 1,894 * 68 8 1,970
2003 328 <1 3 332 2003 2,225 * 17 <1 2,244
2004 58 2 42 102 2004 2,446 99 5 9 2,559
2005 228 <1 9 238 2005 357 61 4 1 424
2006 347 <1 30 378 2006 78 150 13 3 244
2007 231 <1 5 236 2007 260 17 5 12 294
2008 334 <1 6 341 2008 414 6 8 29 457
2009 380 <1 9 389 2009 923 49 23 19 1,013
2010 668 <1 4 672 2010 688 12 16 9 724
2011 668 <1 6 675 2011 482 12 5 9 508
2012 603 <1 6 610 2012 237 <1 3 4 245
2013 299 <1 6 306 2013 128 10 5 7 150

 * No discard estimate due to small sample size.

Georges Bank  (GBK) Mid-Atlantic Bight (MAB)
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Figure 1. Sea scallop discard estimates (mt meats) from trips using scallop dredge, scallop trawl, and otter 

trawl gear presented in Table 1, 1992-2013.  Discards from scallop trawl were not estimated prior 
to 2004 due to small sample size. 

 
 
 
 

 
Figure 2. Estimated scallop landings and current estimated sea scallop discards from scallop dredge fleets 

(mt meats), 1992-2013.  
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Appendix B3. Shell Height Meat Weight Relationships  
Dan Hennen, NEFSC, Woods Hole, MA  
 
1 Methods  

Sea scallops (averaging about 6 per station) were selected for analysis on roughly half of 
all NEFSC survey stations from 2004 to 2013. The scallops were measured to the nearest 
millimeter, carefully shucked, excess water was removed from the meat, and the meat was 
weighed to the nearest gram.  

Preliminary analysis indicated a residual pattern for those scallops with shell heights less 
than 70 mm. The small weights of these scallops (1-3 g) combined with the fact that meat weight 
could only be measured to the nearest gram resulted substantial measurement error. For this 
reason, the analysis was restricted to scallops that are at least 70 mm shell height (Figure A1).  

A generalized linear mixed model (GLMM) with a log link was used to predict meat 
weight using shell height, depth, density, latitude, and subarea (a finer scale regional division 
within each broad region). The GLMM used the gamma likelihood with a log link which is 
appropriate for data (such as these) with ”constant CV” error (McCullagh and Nelder [1989]). 
This method avoids log-transforming the response variable (meat weight) which can lead to bi-
ased estimates when the results are back-transformed. The best model was chosen by AIC 
(Tables 1-5; Burnham and Anderson [2002]). The grouping variable for the random effects was a 
combination of survey station number and the year in which the survey took place. Survey 
stations are chosen randomly (though stratified to fit NEFSC survey design specifications) and 
survey stations numbers are assigned sequentially so that a survey station number in one year 
does not have any particular relationship to the same station number in the next year. Thus, a 
grouping variable based on a combination of survey station number and year incorporates 
random variation in the data that is due to both time (year) and fine scale spatial differences 
(station number).  

Several analyses using simplified versions of the best model were employed to explore 
the effects of year, subarea, and fishing regulations.  

All data analysis was conducted using the R statistical program (v2.13.2).  
 

1.1 Seasonal variation and commercial meat anomalies  
The NMFS Observer program provided meat weight estimates from commercial catches 

that occurred throughout the year. These meat weights are based on meats that are shucked by 
fishermen. Meats from the observer program are not weighed individually. They are packed into 
a graduated cylinder and a volume for a sample (typically 100 scallops) is recorded. The meat 
weight for a sample was calculated using a density estimate of 1.05 

୥

୫୪య
 (Caddy and Radley-

Walters [1972]; Smolowitz et al. [1989]). These “observed” meat weights are therefore an 
average weight for all the meats in the cylinder, not a direct observation of the weight of a meat. 
The observer program does generate approximate shell heights for individual scallops, though 
they are binned by 5 mm increments. Therefore predicted meat weights can be generated for 
each shell height represented in the sample. Predicted meat weights were calculated using the 
best model (by AIC) from the analysis of survey meat weights described above. 

It was noted this year that in many cases the number of shells measured was > 100. 
Because there were only 100 scallop meats packed into the cylinder and there is no way to 
determine which of the shells were associated with the meats in the cylinder, all observations in 
which the shell heights exceeded 100 in number were excluded from this analysis. This 
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correction reduced the sample size by approximately 52%, but reduced the error in predicted 
meat weights considerably (compare Figure 9 to Figure 10).  

The best model was applied to predict meat weights for observer samples based on shell 
heights, latitude and longitude recorded for each sample during 2001 2013. Depth outliers were 
excluded by restricting maximum depths in the observed hauls from each subarea to the 
maximum depths observed in the survey for that subarea.  

Predicted meat weights for each month were compared to the (observed) density derived 

meat weights for each month by  
୮୰ୣୢ.ି୭ୠୱ.

୮୰ୣୢ.
	(Figure 10). The median of these these ratios by 

month are referred to as the monthly meat weight “anomaly”. A positive anomaly indicates that 
the observed meat weight was greater than the expected meat weight, while a negative anomaly 
indicates the opposite is true.  Annuual meat weight anomalies for use in the CASA stock 
assessment model were computed by average the monthly values within a year using the 
landings during each month as weights.  

 
2 Results and Discussion  

In general, the observed meat weights (from observed volumes) should be less than the 
survey-based, predicted meat weights (a negative anomaly) because the commercially shucked 
scallops leave some meat on the shell, and because the surveys occur in late spring or summer 
(depending on the year), a time of typically high meat weight. The pattern in the anomaly 
calculated for MAB roughly follows this pattern in that the anomaly is negative in all months 
excluding April through July, a period that overlaps the survey (Figure 12). On Georges Bank, 
however, there were months of the year where the observed scallop meats were almost 15% 
heavier than the predicted meats, resulting in a positive anomaly (Figure 13). The positive 
anomaly appears in February through July. It is clear from examination of Figure 13 that either 
observed meat weights were heavier than expected and/or predicted meat weights lighter 
between January and May since 2009. In 2009, the timing of the survey was shifted to earlier in 
the year. Predicted meat weights have increased for scallops greater than about 130 mm since the 
last assessment (Figure 8). Therefore observed meat weights must have increased. In fact, 
observed meat weights have both increased and stabilized dramatically in the years since 2009 
(Figure 14). It is possible that this reflects an increase in efficiency among fishers by selecting 
areas and time periods when meat weights were high. The early months of the year were not as 
well sampled by observers relative to the summer months and smaller sample sizes may be 
influencing this pattern as well (Table 6). There is also some indication of a systemic increase in 
meat weight for the region generally, based on the shell height to meat weight model estimates 
reflected in Figure 8, but this result is confounded with the shift in the timing of the survey.  

The anomalies refine assessment model estimates of the total annual weight of meats 
removed by the fishing fleet, based on the lengths recorded by port-side samplers. To make the 
conversion from port-side shell height to meat weight, the median monthly meat weight 
anomalies were smoothed by a second order polynomial loess function with a span of 0.25 
(months). This short smoothing span provided a modest smooth that allowed the data to strongly 
influence the model fit (Figures A15). The smooth was applied to a duplicated annual cycle (i.e. 
24 months were fit, using identical data in each 12 month period) and the middle 12 months were 
selected and reordered so that January was the first month in the resulting model fit. This 
manipulation guaranteed that December and January produced linking estimates and minimized 
edge effects. The smoothed monthly anomalies were then weighted by the landings in each 
month in each year for which we have landings data (1975 − 2012) and annual median values 
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were calculated.  
The annual values were somewhat different from similar values calculated for the last 

assessment (Figures A16 -A17). The anomalies are generally lower (∼ 2%) in the MAB and 
higher (∼ 15%) in the GBK. The difference in the GBK region is due to the large shift in the 
monthly anomalies between the last assessment and the current one, based primarily on the 
increase in observed meat weight (Figure 14). The shift in the MAB is relatively minor and is 
likely attributable to a combination of the various manipulations to the observer data and small 
changes in the shell height to meat weight model. 
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Table 1: AIC results from model fits to predict meat weight.  

Formula AIC  BIC  logLik  deviance 
sh+d+sh*d+area+(sh+1)  101114.57  101267.34  -50537.28  101074.57 
sh+d+lat+clop+area+(sh+1)  101123.48  101283.90  -50540.74  101081.48 
sh+d+area+(sh+1)  101129.14  101274.28  -50545.57  101091.14 
sh+d+lat+area+(sh+1)  101130.13  101282.90  -50545.06  101090.13 
sh+d+clop+sh*d+(sh+1)  101166.05  101234.80  -50574.02  101148.05 
sh+d+lat+clop+(sh+1)  101175.50  101244.25  -50578.75  101157.50 
sh+d+clop+(sh+1)  101180.69  101241.80  -50582.35  101164.69 
sh+d+sh*d+(sh+1)  101187.51  101248.63  -50585.76  101171.51 
sh+d+lat+sh*d+(sh+1)  101188.53  101257.28  -50585.26  101170.53 
sh+d+(sh+1)  101202.36  101255.83  -50594.18  101188.36 
sh+area+(sh+1)  101288.53  101426.03  -50626.26  101252.53 
sh+clop+(sh+1)  101359.04  101412.51  -50672.52  101345.04 
sh+lat+(sh+1)  101363.62  101417.09  -50674.81  101349.62 
d+(sh+1)  103485.29  103531.13  -51736.65  103473.29 
sh+d+sh*d+(1)  105482.86  105528.69  -52735.43  105470.86 
sh+d+area+(1)  105660.31  105790.17  -52813.16  105626.31 
sh+d+clop+(1)  105750.75  105796.58  -52869.37  105738.75 
sh+d+lat+(1)  105769.06  105814.89  -52878.53  105757.06 
sh+d+(1)  105773.59  105811.78  -52881.79  105763.59 
sh+area+(1)  105824.38  105946.60  -52896.19  105792.38 
sh+clop+(1)  105915.93  105954.12  -52952.96  105905.93 
sh+(1)  105923.56  105954.12  -52957.78  105915.56 
sh+lat+(1)  105925.11  105963.31  -52957.56  105915.11 
d+(1)  119777.65  119808.20  -59884.82  119769.65 
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Table 2: Results from model fits to predict meat weight. The coefficients estimated are: the 
intercept(int), ln(shell height) (sh), ln(depth) (d), latitude (lat), an interaction between ln(shell 
height) and ln(depth)(shXd) and an Identifier which is either a marker for a model with subarea 
coefficients (see Tables 3 and4) or a coefficient for closed vs. open (clop). Random effects are 
either on the shell height coefficient and intercept (sh+1) or intercept alone (1). The models are 
listed in order of increasing AIC (lowest AIC model is in the top row). 

formula   int   sh   d   lat   shXd   Identifier 

 sh+d+sh*d+area+(sh+1)   -16.98(0.013)   4.6(0.021)   1.93(0.018)     -0.48(0.087)   1  

 
sh+d+lat+clop+area+(sh+1)   -6.43(0.016)   2.61(0.022)   -0.38(0.019)   -0.02(0.012)     0.09(0.019)  

 sh+d+area+(sh+1)   -7.45(0.013)   2.61(0.021)   -0.38(0.018)       2  

 sh+d+lat+area+(sh+1)   -6.55(0.016)   2.61(0.022)   -0.39(0.019)   -0.02(0.012)     3  

 sh+d+clop+sh*d+(sh+1)   -17.08(0.006)   4.59(0.021)   1.94(0.016)     -0.48(0.087)   -0.06(0.008)  

 sh+d+lat+clop+(sh+1)   -8.02(0.006)   2.61(0.021)   -0.38(0.016)   0.01(0.003)     -0.07(0.008)  

 sh+d+clop+(sh+1)   -7.56(0.006)   2.61(0.021)   -0.36(0.016)       -0.06(0.008)  

 sh+d+sh*d+(sh+1)   -17.38(0.004)   4.64(0.021)   2.01(0.016)     -0.49(0.087)    

 sh+d+lat+sh*d+(sh+1)   -17.56(0.004)   4.64(0.021)   2.01(0.016)   0.005(0.003)   -0.49(0.087)    

 sh+d+(sh+1)   -9.09(0.004)   2.61(0.021)   -0.34(0.016)        

 sh+area+(sh+1)   -9.07(0.013)   2.61(0.022)         4  

 sh+clop+(sh+1)   -9.04(0.006)   2.61(0.022)         -0.04(0.008)  

 sh+lat+(sh+1)   -8.63(0.004)   2.61(0.022)     -0.01(0.003)      

 d+(sh+1)   4.96(0.005)     -0.36(0.019)        

 sh+d+sh*d+(1)   -28.64(0.004)   6.98(0.015)   4.94(0.017)     -1.1(0.064)    

 sh+d+area+(1)   -6.38(0.014)   2.38(0.016)   -0.38(0.019)       5  

 sh+d+clop+(1)   -6.64(0.006)   2.4(0.016)   -0.34(0.017)       -0.06(0.008)  

 sh+d+lat+(1)   -7.18(0.004)   2.4(0.016)   -0.34(0.017)   0.01(0.003)      

 sh+d+(1)   -6.76(0.004)   2.4(0.016)   -0.32(0.017)        

 sh+area+(1)   -7.99(0.014)   2.38(0.016)         6  

 sh+clop+(1)   -8.02(0.006)   2.39(0.016)         -0.04(0.009)  

 sh+(1)   -8.05(0.004)   2.39(0.016)          

 sh+lat+(1)   -7.91(0.004)   2.39(0.016)     -0.003(0.003)      

 d+(1)   4.69(0.007)     -0.31(0.028)        
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Table 3: Results from model fits to predict meat weight in MAB subareas. 
Identifier   VB   DMV   DMV.VB   ET   HC   NYB  

 1   -0.13(0.023)   -0.06(0.018)  -0.14(0.028)  -0.17(0.022)  -0.08(0.019)   -0.07(0.019) 

 2   -0.14(0.023)   -0.06(0.018)  -0.15(0.028)  -0.17(0.022)  -0.08(0.019)   -0.07(0.019) 

 3   -0.14(0.023)   -0.12(0.041)  -0.22(0.05)   -0.23(0.039)  -0.12(0.031)   -0.11(0.028) 

 4   -0.06(0.024)   0.04(0.018)   -0.03(0.028)  -0.07(0.022)  0.002(0.02)   0.04(0.019)  

 5   -0.14(0.024)   -0.05(0.019)  -0.2(0.029)   -0.24(0.023)  -0.11(0.02)   -0.07(0.02)  

 6   -0.07(0.025)   0.05(0.019)   -0.08(0.029)  -0.13(0.023)  -0.03(0.021)   0.04(0.02)  
 
Table 4: Results from model fits to predict meat weight in GBK subareas. 

Identifier   NLS   SCH   CA1   SEP   NEP   CA2  

 1   0.07(0.021)   -0.13(0.018)   0   -0.07(0.023)   -0.13(0.017)   0.004(0.017)  

 2   0.07(0.021)   -0.13(0.018)   0   -0.07(0.023)   -0.13(0.017)   0.005(0.017)  

 3   0.06(0.022)   -0.13(0.018)   0   -0.08(0.024)   -0.12(0.018)   0.008(0.017)  

 4   0.14(0.021)   -0.07(0.019)   0   -0.08(0.024)   -0.12(0.017)   0.05(0.018)  

 5   0.08(0.021)   -0.12(0.019)   0   -0.06(0.024)   -0.14(0.018)   0.001(0.018)  

 6   0.14(0.022)   -0.06(0.02)   0   -0.07(0.025)   -0.12(0.018)   0.04(0.018)  
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Table 5: Results from model fits to predict meat weight. Predictors are ln(shell height) (sh) 
ln(depth) (d), region (reg) and open vs. closed to fishing (clop). MAB and open coefficients are 
shown. GBK and closed are assumed to have coefficients equal to 0. 

formula   int   sh   d   reg   clop   AIC   BIC  

 sh+d+reg+clop+(sh+1)   -7.35(0.012)   2.61(0.03)   -0.4(0.028)   -0.05(0.014)   -0.06(0.013)   101171   101240  

 sh+d+reg+(sh+1)   -7.46(0.009)   2.61(0.03)   -0.38(0.029)   -0.04(0.014)     101195   101256  

 sh+reg+clop+(sh+1)   -9.07(0.012)   2.61(0.03)     0.04(0.014)   -0.04(0.014)   101353   101414  

 sh+reg+(sh+1)   -9.09(3e-04)   2.61(4e-04)     0.04(0.01)     101361   101414  
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Table 6: Sample sizes for observed meat weights by month in GBK. 

month   pre2010 
 
post2009  Total  

 1   142   82   224  

 2   86   38   124  

 3   18   62   80  

 4   32   88   120  

 5   84   149   233  

 6   431   333   764  

 7   433   404   837  

 8   356   404   760  

 9   269   174   443  

 10   201   151   352  

 11   249   138   387  

 12   167   58   225  

 Total   2468   2081   4549  
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Figure 1: Natural log of shell height against the natural log of meat weights measured on NEFSC 
scallop surveys between 2003 and 2013.  
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Figure 2: Residuals from the fit of best model predicting meat weight by the natural log of shell 
height.  
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Figure 3: Observed vs. predicted meat weight using the best model by AIC.  
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Figure 4: Meat weight curves by subarea. The depths used are the median depths observed in 
each subarea during all available years of the survey.  
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Figure 5: Meat weight curves by year. The curves are fits of the best model to annual subsets of 
the data. The sample size of each subset are shown in the legend.  
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Figure 6: Shell height to meat weight relationship for each region based NEFSC survey data 
from 2003 -2013. The length of the curves represents the range of shell heights observed in each 
region.  
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Figure 7: Shell height to meat weight relationship for two time periods in MAB. The length of 
the curves represents the range of shell heights observed in each period.  
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Figure 8: Shell height to meat weight relationship for two time periods in GBK. The length of the 
curves represents the range of shell heights observed in each period. 
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Figure 9: Meat weights estimated using data from the observer program compared to those 
expected based on NEFSC survey data. The solid line shows one to one correspondence and is 
for illustrative purposes only. The large cluster of points below the one to one line is an artifact 
of many more shells being measured for height than were packed into the cylinder for volume 
determination.  
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Figure 10: Meat weights estimated using data from the observer program compared to those 
expected based on NEFSC survey data. The solid line shows one to one correspondence and is 
for illustrative purposes only. Observations including more than 100 measured shells were 
excluded.  
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Figure 11: The anomalies estimated in the last assessment compared to the current anomalies.  
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Figure 12: Monthly meat weight anomalies for the period prior to 2010, the period after 2010 
and overall in the MAB.  
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Figure 13: Monthly meat weight anomalies for the period prior to 2010, the period after 2010 
and overall on GBK.  
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Figure 14: Relative monthly meat weight in observed commercial catches for the period prior to 
2010, the period after 2010 and overall on GBK.  
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Figure 15: Smoothed anomalies for MAB and GBK.  
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Figure 16: Landings weighted annual anomaly for MAB.  
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Figure 17: Landings weighted annual anomaly for GBK.  
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Figure 18: Relative monthly meat weight in observed commercial catches for the period prior to 
2010, the period after 2010 and overall for MAB.  
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Appendix B4. Estimation of Dredge efficiency from paired dredge-HabCam observations 
 
Timothy J. Miller, NEFSC, Woods Hole, MA 
 
 

We use HabCam optical survey data to estimate capture efficiency of the NEFSC scallop 
survey dredge where capture efficiency is the probability of capture for a scallop in the path of 
the dredge. The literature on methods for analysis of comparative gear studies is extensive, but 
an alternative observation model is used here because HabCam provides hundreds or thousands 
of observation for each dredge tow. We develop a general hierarchical model for the dredge and 
HabCam observations, compare relative performance of a set of specific models, assess the 
statistical behavior of the estimators to determine the best model, and provide relatively precise 
estimates of the efficiency of the scallop survey dredge on sand and gravel/cobble substrates. 
 
 
Materials and Methods 
 

A dredge survey is conducted annually by the Northeast Fisheries Science Center to 
obtain relative abundance indices and other data for sea scallops. The dredge tows are conducted 
at stations according to a stratified random design. At a subset of these stations in 2008 and 
2009, the HabCam optical survey device was also deployed. The HabCam captures images 
continuously along its track, but a thinned set were used in our analyses to make correlation 
between successive images within a station analyzed negligible. In all, we had 110 dredge 
stations where the number of sea scallops and swept area were recorded and where HabCam data 
including area searched, shell heights and number of scallops observed was recorded.  There 
were 95-1,669 HabCam images used for each station. 

  
The density of scallops differs by substrate type as based on HabCam as may the 

efficiency of the dredge. Sea scallop density is generally higher in sand than gravel substrates.  
We observe the substrate in each HabCam image, but the dredge track may cover various 
substrates which are not directly observed. The lack of these observations for the dredge makes 
estimation of relative efficiency for specific substrates impossible.  However, sand and 
gravel/cobble substrates are more prevalent in particular survey strata.  Sandy bottom is 
predominant in the Mid-Atlantic  strata 6130, 6140, 6150, 6180, and 6190 and Georges Bank 
strata 6460, 6470, 6530, 6540, 6550, 6610, 6621, and 6670.  Rock and gravel substrates are more 
common in Georges Bank strata 6490, 6500, 6510, 6520, 6651, 6652, 6661, 6662, and 6710. We 
therefore used stratum to establish proxies for substrate type when estimating dredge efficiency. 
In all there were 22 stations classified gravel (G) and 88 classified as sand (S). 
 
Observation model 

At station i out of n total stations, we have the numbers captured by the dredge NDi and 
the total number of sea scallops counted in associated HabCam images ni. For HabCam, we 
assume all scallops are observed in each image and that the surface area Aij of the substrate in 
the field of view is known.  We also assume that the area swept by the dredge (determined using 
inclinometer sensors) is known.  Conditional on the density of scallops in the image ݆ at station ݅ 
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 ு௜௝ , we assume the number of scallops observed in the image is Poisson distributed with meanߜ

 Conditional on the density of scallops ߜ஽௜ and the known area swept by the dredge at station  
 ஽௜, we assume the number of captured scallops is Poisson distributed with meanܣ

 

where ݍ is the efficiency of the dredge (cf. Paloheimo and Dickie 1964). Note that HabCam 
images is assumed to be 100% efficient at detecting scallops. More generally, ݍ in Eq. 2 can be 
viewed as a relative efficiency when the HabCam is less than fully efficient.  
 

We consider two different models for densities in each HabCam image ߜு௜௝. The first 
simply assumes that the densities within a station are equal ߜு௜௝ ൌ  ு௜ and the second assumesߜ
that the densities are gamma distributed with station-specific mean ߜு௜ and shape ߪு௜parameters, 

In the former model the counts in the HabCam images	 ுܰ௜௝|ߜு௜, are still conditionally Poisson 
distributed.  In the latter model, they are negative binomial distributed in the with mean 

and variance 

 
For models where we assume the HabCam densities are gamma distributed we also 

consider variants where the shape parameter is constant across stations ߪு௜ ൌ  ு and where theߪ
shape parameter is itself gamma distributed with mean ߪு and shape parameterߪఙಹ. The former 
corresponds to an assumption that the variability of the densities observed in each image is 
constant across stations and the latter allows the variability to change from station to station. For 
stations where ߪு௜ is large, the distribution of HabCam image observations is closer to Poisson. 
 

The dredge efficiency ݍ and densities ߜ஽௜ resulting in the dredge observations and the 
average densities ߜு௜ for HabCam observations at a given station are not all estimable as fixed 
parameters. Estimation of dredge efficiency requires some assumption about the relationship of 
dredge and HabCam densities both within and across stations. We use a bivariate gamma 
distribution described by Moran (1969) to relate the densities producing the HabCam and dredge 
observations at each station (see Attachment B4-1). The distribution is a function of the mean 
and shape parameters for the marginal gamma distributions and a correlation parameter (െ1 ൏
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ఋߩ ൏ 1) that defines the relationship of dredge and HabCam densities within a station. The 
densities are independent when ߩఋ ൌ 0 and identical when ߩఋ ൌ 1. We assume the means of the 
dredge and HabCam densities are the same, but that these means are a function of the substrate 
type at a given station. The details for the different components of five plausible models we 
consider are provided in Table 1. 
 

The general likelihood that we maximize for parameter estimation is 

 
Unobserved densities are treated as random effects and integrated out to obtain the marginal 
model likelihood. Models such as ܯଵ where HabCam densities within stations are assumed 
constant do not require the corresponding integration in Eq. 3. When densities within stations are 
gamma distributed, the numbers in the HabCam images conditional on ߜு௜ are negative binomial 
distributed. The closed form for this marginal sub-model is computationally more efficient. 
Because the densities are marginally gamma distributed and the dredge counts are Poisson 
distributed conditional on the realized densities at each station, dredge observations ஽ܰ௜|ߜ are 
marginally negative binomial distributed. The HabCam observations are also marginally 
negative binomial when the densities within a station are constant. In all models, the correlation 
of HabCam and dredge observations is defined by	ߩ.  
 

We used AD Model Builder (Fournier et al. 2012) and the random effects library (Skaug 
and Fournier 2006) to maximize the marginal likelihood for all models. Parameters ߠ were 
estimated on log scale except ߩఋ  which was defined as ߩఋ ൌ െ1 ൅ 2/ሺ1 ൅ ݁ିఏሻ. Standard errors 
were approximated using the delta method and asymmetric 95% confidence intervals were 
calculated by making the appropriate transformation of ߠ෠ േ ଵିഀݖ

మ
ߙ ෠൯ whereߠ൫ܧܵ ൌ 0.05 and 

ଵିഀݖ
మ
 is the quantile of the standard normal distribution with cumulative probability	1 െ ఈ

ଶ
. 

 
Simulation study  

Because the methods were new, we used simulation to evaluate the reliability of the 
parameter estimates in the best model chosen by AIC. Using the parameter estimates from the 
best model, we simulated 1000 data sets and fit the same model to each data set. We calculated 
bias of parameter and standard error estimators and 95% confidence interval coverage. 
 
 
Results 
 

The best performing model M5 demonstrated that the efficiency of the dredge differed 
substantially in gravel (0.24) and sandy (0.40) substrates (Table 2). There were dramatic 
reductions in AIC between ܯଵ and ܯଶ and between ܯଶ and ܯଷ. The reduction for ܯଶ implies 
strong evidence of variability in densities among HabCam observations within stations. The 
reduction in AIC for model ܯଷ implies strong evidence of variation among stations in the 
variance of HabCam observations. The very small difference in AIC values for ܯଷ and ܯସ 
implies, implies that there is little evidence for differences  in variability in mean densities among 
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stations for both HabCam and dredge observations.  
Mean densities were much greater in gravel substrates (൐ 0.5	݉ଶ) than sand substrates 

(൏ 0.5	݉ଶ) for all models. Because there were fewer stations in the gravel substrate than sand, 
the relative precision of mean density estimates for gravel was lower for all models (CV about 
0.3 for gravel vs. about 0.1 for sand).  The precision of the dredge efficiency estimate was lower 
in gravel also (CV about 0.14 for gravel vs. about 0.06 for sand) for the best performing model 
ఋߩ) ହ. The correlation of mean densities for dredge and HabCam observations was highܯ ൐ 0.9ሻ 
in all models. 
 
Statistical behavior 

Seventy file out of 1000 simulations with model M5 did not converge. However, average 
parameter estimates for the unconverged fits were similar to averages for simulations where the 
model did converge. The relative bias for estimates from converged model fits was negligible for 
most parameters except that the shape parameter ߪఙಹwhich determines the variability of HabCam 
densities at each station was biased high by about 12% (Table 3). Standard error estimates were 
negligible for most parameters except ߪఙಹ (SE approximately -15%) and the efficiency of the 
dredge in gravel substrates (SE approximately 6%). Bias of coverage for 95% confidence 
intervals was also small with the exception of the parameter ߪఙಹ (bias about -9%). 
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Attachment B4-1.  Bivariate gamma distribution. 
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Appendix B5. Empirical assessment 
Larry Jacobson, NEFSC, Woods Hole, MA 
 
Introduction 

The empirical assessment used simple techniques to estimate sea scallop stock 
abundance, biomass and fishing mortality in the MAB, GBK and combined stock areas.  The 
purpose was to evaluate the accuracy of CASA estimates as independently as possible.  
However, empirical results could be used in place of CASA model estimates if the later were 
unavailable.  The data and various parameters used in the empirical analysis are a subset of those 
also used in the CASA model and were all obtained independently in field studies or other 
analyses rather than from a stock assessment model.   
 
Materials and methods 

Survey swept-area abundance data used in the empirical analysis were the best available 
estimates of total 40+ mm stock abundance and considered reliable.  Abundance from the dredge 
and optical surveys (HabCam and SMAST large camera) were the same as used in CASA except 
that SMAST data were adjusted for logistic size selectivity using externally estimated selectivity 
curves (Appendix B7 in NEFSC 2007).  In CASA, the same selectivity curves are applied in the 
model after data input.  In addition abundance estimates were not rescaled for comparison to a 
prior distribution as in CASA although this had no impact on results.  Size selectivity was 
assumed to be flat in the dredge and HabCam surveys.    

Updated capture efficiency estimates were used in expansion of the dredge survey to 
calculate swept-area abundance prior to their use in this analysis (Appendix B4).  Additional 
variance due to uncertainty about dredge efficiency was included (see below).  Capture 
efficiency was assumed to be 100% in the dredge and HabCam surveys for scallops 40+ mm SH 
in calculating swept-area abundance for this analysis.  Thus, capture efficiency was factored in to 
all of the survey abundance data prior to use here. 

As in the CASA model analysis, dredge survey abundance estimates were adjusted to 
account for scallops in deep or shallow water areas not sampled by the dredge but no adjustments 
were made for areas of poor habitat within the survey area. Survey abundance at length data 
were not adjusted for errors in measuring shell height as in the CASA model although such 
errors are appreciable in the optical surveys because the adjustment requires information 
available in a simulation based stock assessment model.  These type of errors smooth size 
composition estimates making modes lower, valleys higher and proportions in the largest and 
smallest length groups larger (Jacobson et al. ????). 

Five mm length groups (40-45, 45-50 …) were used and the last length group was always 
a plus group.  Intermediate calculations included all of the size groups in the original data but 
results are summarized using a 140+ mm size group, which is roughly the same as von 
Bertalanfy ܮ௠௔௫ (asymptotic mean size) estimates.  Only years 2003-2013 where included 
because at least two surveys (dredge+SMAST, dredge+HabCam, or dredge+SMAST+HabCam) 
were conducted each year.  Using multiple independent surveys helps smooth estimates without 
using a population dynamics model like CASA.   

Total abundance in each year and for each size group (Ny,L) was estimated by averaging 
swept-area abundance estimates from each survey: 

௬ܰ,௅ ൌ
∑ ௦ܰ,௬,௅௦

݊௦,௬
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where Ns,y,L was swept area abundance data for year y and survey s while ns,y=2 or 3 was the 
number of surveys.  Total survey stock abundance was	 ௬ܰ ൌ ∑ ௬ܰ,௅௅ .  Stratified random CVs for 
mean total number per tow and the number of positive tows by year in the dredge survey provide 
some information about precision of abundance data (Table 1 and Figure 1). 

Variances for Ny,L were calculated from length specific average CVs for mean number 
per tow in the dredge survey.  Length specific variances were not easily available for the 
SMAST and HabCam surveys.  In particular:   

൫ݎܸܽ ௦ܰ,௬,௅൯ ൌ ൫ܥ ௅ܸ ௦ܰ,௬,௅൯
ଶ
 

where CVL is the average CV at length in the dredge survey for either Georges Bank or the Mid-
Atlantic (Figure 2).   CVs for total abundance Ny were from the CVs for total catch per tow in 
each survey (Figure 1):   

൫ݎܸܽ ௦ܰ,௬൯ ൌ ܥ ௦ܸ,௬ ௦ܰ,௬ 
and: 

൫ݎܸܽ ௬ܰ൯ ൌ ∑ ൫ݎܸܽ ௦ܰ,௬൯௦ ݊௦ଶ⁄ . 
Dredge survey abundance CVs were increased to account for uncertainty in capture 

efficiency.  CVs for dredge survey capture efficiency were 0.034/0.243=0.14 (gravel/cobble) and 
0.022/0.4=0.05 (sand, Appendix B4).  Therefore, the adjusted CV for a dredge survey abundance 
estimate was	ඥܥ ௦ܸ,௬

ଶ ൅	0.1ଶ  where 0.1 is close to the average CV for gravel/cobble and sand.  
Uncertainty about stock area, area sampled, and other factors were ignored in calculating 

survey abundance.  However, variance from these factors was probably modest relative to the 
variance in mean catch per tow and capture efficiency for the dredge survey.  Uncertainty about 
stock area is relatively small because scallops are sessile with a static spatial distribution that is 
well defined by the optical surveys and covered effectively by each survey after the dredge data 
are adjusted for area not surveyed.  Uncertainty about size selectivity in the experimentally 
derived size selectivity curve for the SMAST survey was ignored for lack of time but could have 
been included. 

For plotting, mean abundance at length estimates were smoothed with GAM models fit 
assuming gamma errors using the mgcv library in the R programming language (Wood 2006):  

gam(y~s(x),family=Gamma(link=log),weights=wts) 

The variances used for weights were, for example, ܸܽݎ൫ ௬ܰ,௅൯ ൌ ൣ ௬ܰ,௅	ܸܥ൫ ௬ܰ,௅൯൧
ଶ
.  Assuming 

predicted values were gamma distributed, 95% percent confidence intervals were calculated for 

means equal to the fitted values and variances ܸܽݎ൫ ෡ܰ௬,௅൯ ൌ ൣ ෡ܰ௬,௅	ܸܥ൫ܨ௬,௅൯൧
ଶ
.  The variance of 

the fitted values calculated in the GAM was not used because it grossly underestimated 
uncertainty.  Better confidence intervals might have been obtained by combining the CV above 
with the CV for uncertainty in the smooth trend calculated by the GAM software. 
 Fishing mortality rates by year and length (Fy,L) were approximated by dividing catch 
numbers by estimated abundance: 

௬,௅ܨ ൌ
௬,௅ܥ
௬ܰ,௅

 

Where Cy,L is catch number at length.  This approximation is reasonable because the 
instantaneous rate of fishing mortality is exactly ܨ ൌ ܥ ഥܰ⁄  (Ricker 1975) and because scallop 
surveys tend to occur near the middle of the year when abundance may be similar to average 
abundance (Table 2).  

Catch numbers at length in each year (Cy,L) were calculated: 
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௬,௅ܥ ൌ
௬ܹ

݉௬
 ௬,௅݌

where Wy is total meat weight for landings, my is mean weight of scallops in the catch and py,L is 
a size-specific proportion of the total commercial catch.  The mean weight (my) was calculated 
from commercial size composition data, survey shell height-meat weight parameters and annual 
commercial meat weight anomalies as in the CASA model.   

Variances for fishing mortality were approximated based on CVs for average survey 

abundance and an assumed CV=10% for catch to give	ܸܥ൫ܨ௬,௅൯ ൌ ටܸܥ൫ ௬ܰ,௅൯ ൅ 0. 1ଶ		.  

Abundance weighted fishing mortality (all sizes combined) was approximated Fy=Cy/Ny with 

൫ܨ௬൯ ൌ ටܸܥ൫ ௬ܰ൯ ൅ 0. 1ଶ		 . 

 CASA models include a correction for incidental mortality which is highest on the 
smallest size groups.  This adjustment was not made in the empirical analysis because it requires 
an a-priori estimate of fishing mortality and fishery selectivity not available in the empirical 
analysis.  Therefore, fishing mortality Fy,L and Fy are underestimated relative to total fishery 
mortality.  Fishing mortality attributable to landings and fully recruited fishing mortality are 
unaffected. 

GAM models were used to smooth fishing mortality at size estimates and confidence 
intervals were estimated in a manner similar to abundance at size.  The variances used for 

weights were ܸܽݎ൫ܨ௬,௅൯ ൌ ௬,௅൯൧ܨ൫ܸܥ	௬,௅ܨൣ
ଶ
and the variances used to calculate confidence 

intervals were ܸܽݎ൫ܨ෠௬,௅൯ ൌ ௬,௅൯൧ܨ൫ܸܥ	෠௬,௅ܨൣ
ଶ
.  Fully recruited fishing mortality was estimated 

using the gam model to predict Fy,L over a wide range of narrowly spaced shell height values and 
selecting the largest value of predicted Fy,L. 

Commercial size selectivity estimates are useful although not required in the empirical 
assessment or in projections which are handled independently in the SAMS model.  However, 
for illustration, size selectivity by year and size sy,L was estimated by rescaling fishing mortality 
at size: 

௬,௅ݏ ൌ
௬,௅ܨ

௬,௅൯ܨ൫ݔܽ݉
 

and then smoothing the rescaled estimates using a model for proportions: 
gam(y~s(x),family=quasibinomial,weights=wts) 

The weights were one when estimating selectivity at size in individual years.  Weights equal ns 
were used when selectivity estimates for multiple years were combined to estimate average 
fishery selectivity.  After the GAM model was fit, predicted selectivity were rescaled again to a 
maximum value of one.  Fishable abundance (available to the fishery) in each year Ay can be 
calculated using abundance at size and a fishery selectivity estimate although the estimates are 
not required for this empirical assessment.  For example: 

௬ܣ ൌ෍ ௅ݏ
௅

௬ܰ,௅ 

 
Results 

Empirical abundance at size estimates appear reasonably precise and smooth although the 
smoothness is due partly to measurement errors is survey size data (Figure 3).  The progression 
of two large year classes is clear during 2003-2006 in the Mid-Atlanic and during 2012-2013 in 
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both regions.  There are clear differences between the two regions in population size composition 
(e.g. the 140+ mm size group) seem clear.  Important aspects of the fishery (relatively low 
exploitation rates and targeting large animals) are evident in comparing abundance andt catch 
numbers at size (Figure 4). 

Empirical fishing mortality at length data show that fishing pressure is higher in the Mid-
Atlantic than on Georges Bank (Figure 5).   The working group concluded that the variation over 
time in fishery selectivity between domed and ascending patterns could be explained in terms of 
management measures that: 1)  increased the minimum ring size on commercial vessels and 
decreased selectivity of small scallops during 1994-1995, 2) recruitment events, and 3) 
management measures that opened and closed rotational harvest areas where large scallops were 
common.  Average fishery selectivity curves for 2003-2013 illustrate how selectivity for 
particular time periods can be estimated as needed for management related or other analyses 
(Figure 6). 

Empirical abundance and fishing mortality for the combined Mid-Atlantic and Georges 
Bank regions were calculated by summing catch numbers and abundance for the Mid-Atlantic 
and Georges Bank regions and them computing approximate fishing mortality rates from the 
ratio of the sums.  CVs and were calculated using standard formulas for sums of random 
variables. 

Empirical and CASA model estimates of abundance and fishing mortality show similar 
trends in all regions (Tables 3-4 and Figure 7).  However, empirical abundance estimates were 
generally higher reflecting the tension in CASA models between matching the scale of the 
abundance data (matching the prior on Q) versus fitting the survey and fishery data.  As 
expected, fishing mortality show the inverse pattern with empirical generally lower than CASA 
estimates.   

Fully recruited fishing mortality estimates from empirical calculations were usually lower 
than from CASA the CASA model as well (Figure 8).  However, the comparison may not be 
very useful because of fully recruited F depends on fishery selectivity assumptions which 
differed in the two assessment approaches. 

 
Status determination and catch advice 
 No special provisions are necessary for providing catch advice to the scallop fishery using 
the empirical methods.  Catch advice is generated using a simulation models (SAMS) which is 
initialized using best estimates of abundance at length from surveys (i.e. using the empirical 
method).   

Reference points used to determine if the scallop stock is overfished or if overfishing is 
occurring are more difficult.  For this assessment, it would be reasonable to compare empirical 
fishing mortality estimates to reference points calculated in terms of landings divided by 1 July 
abundance from the SYM reference point model.  The CASA model may be problematic due to 
the tension between scale of the model estimates and general fit to the data.  However, the 
current condition of the stock (not overfished and overfishing not occurring) is clear based on 
both sets of models and common sense.  Empirical and CASA results are broadly similar.  If the 
trend in B/BMSY estimates from the CASA and SYM models are roughly correct, then the ratio 
for 2013 should be sufficient to determine if the stock is overfished despite uncertainty about 
scale. 
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Advantages and disadvantages 
It was advantageous to use both empirical and the complex CASA modeling approach for 

CASA, if only for comparison and to determine if the CASA model results were plausible. 
Empirical estimates depend almost entirely on data while the CASA model depends on data, 
biological assumptions (e.g. about growth and natural mortality) and modeling techniques. The 
empirical approach requires fewer assumptions about growth, natural mortality, size selectivity, 
etc. and uses most of the data also used in CASA.  However, the empirical approach is sensitive 
to survey measurement errors which are relatively high in the Georges Bank area.  It is therefore 
necessary to have multiple surveys each year for empirical estimation.  The empirical approach 
cannot be applied in all years and the CASA model may give a clearer long term perspective on 
stock size and productivity.   

In theory, the CASA model should do a better job of balancing goodness of fit to survey, 
catch and size composition data to estimate realistically smooth population trends.  However, 
experience with many real  stocks and models indicates that stock assessment models often have 
pathological problems that may be difficult to resolve  due to many potential causes including 
inaccurate catch data, changes in natural mortality, etc..  

 An assessment model like CASA makes it easier to calculate reference points.  Empirical 
reference point methods were not evaluated in this assessment but there are a number of methods 
that could be applied.   

Empirical estimates do not suffer from retrospective patterns, which are usually blamed 
on model structure or assumptions about the data which may remain hidden in empirical 
analyses.  CASA model results did not show retrospective error in this assessment but this was 
probably due to the proximity of the estimates to priors for survey capture efficiency with 
tension in the model pulling abundance estimates low enough so that implied capture efficiency 
estimates were trapped near the upper prior bound.  The empirical estimates in this assessment 
for 2003-2013 are less sensitive to errors in historical catch which are often suspected when 
modeling problems occur. 

 
Reference: 
NEFSC. 2007. 45th Northeast Regional Stock Assessment Workshop (45th SAW): 45th SAW 
assessment report. US Dep Commer, Northeast Fish Sci Cent Ref Doc 07-16. 
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Table 1.  Numbers of tows in which at least one scallop was caught in the MAB and GBK areas during dredge surveys during 2003-
2013 by size group.  For example, the 40 mm size group is 40-44.9 mm SH.  The last size bin (140+ mm SH) is a plus group.  The 
number of positive tows is a lower bound estimate for the effective sample size in each year/size group category.. 

 
  

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140+

2003 110 113 120 127 145 146 145 151 147 145 152 158 160 159 156 157 135 122 91 56 39

2004 124 132 145 137 150 146 154 170 187 192 191 188 187 186 192 187 169 150 120 84 41

2005 157 160 170 161 147 152 142 168 188 205 215 217 220 224 224 223 216 210 194 164 127

2006 111 139 160 176 196 232 222 231 242 235 239 240 246 250 248 252 246 234 211 163 117

2007 70 97 130 148 150 172 186 204 209 218 237 249 250 257 250 249 244 237 203 168 131

2008 168 183 179 178 176 158 154 159 172 180 199 214 217 222 215 217 207 202 175 149 125

2009 77 88 104 97 114 108 121 147 152 151 160 152 157 153 162 157 156 150 130 103 86

2010 141 156 156 135 131 117 122 134 171 199 219 227 240 236 234 241 233 227 196 132 100

2011 119 149 151 146 123 111 96 117 165 191 223 214 219 225 232 230 238 238 225 187 163

2012 155 165 158 141 131 120 126 149 156 174 185 187 192 211 208 201 213 217 204 171 119

2013 99 129 164 167 213 216 229 227 222 232 231 238 224 220 220 216 213 214 203 161 140

2003 64 72 76 84 99 92 95 99 96 110 115 116 124 137 137 131 131 139 128 114 122

2004 83 94 96 105 102 92 95 108 120 141 140 145 148 156 153 164 166 169 163 141 140

2005 46 57 98 94 108 101 106 109 133 142 164 177 205 229 245 254 267 277 276 256 248

2006 67 74 88 103 108 96 103 96 93 112 127 138 138 144 154 154 170 172 173 165 172

2007 153 181 217 215 240 222 204 189 190 185 199 202 210 212 208 246 271 276 277 274 284

2008 111 114 129 146 156 145 131 141 138 148 158 174 178 183 168 170 159 176 169 180 196

2009 95 107 135 132 128 126 119 117 130 145 158 160 156 162 164 162 160 161 152 148 168

2010 81 77 92 88 111 108 117 130 152 150 170 161 185 193 214 215 219 223 224 206 216

2011 44 44 43 50 68 72 85 92 119 132 146 138 154 148 155 176 177 184 180 176 184

2012 61 86 100 105 100 94 107 107 125 133 144 155 151 157 168 174 176 181 181 178 177

2013 81 106 115 123 138 139 118 108 112 116 122 126 134 133 141 142 155 153 163 156 161

Size group (mm)
Year

MAB

GBK
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Table 2.  Dates (Julian) for sea scallop surveys during 2003-2013 in the MAB and GBK regions. 

Survey 
Mid‐Atlantic  Georges Bank 

Comment 
Min  Max  Mid  Min  Max  Mid 

Dredge  130  215  173  163  230  197 
1979‐
2013  

SMAST  130  194  162  165  233  199  2003‐2009 

HabCam  153  201  177  159   210   184  

2011‐2012 
for the 
Mid‐

Atlantic 
and 2011‐
2013 for 
Georges 
Bank  
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Table 3.  Abundance and fishing mortality (estimates from the empirical approach and CASA model for the Georges Bank (top) and 
Mid-Atlantic (bottom) regions. 

Year 

Empirical  CASA 

Abundance  
(Mid‐year,  

40+ mm, 106) 
CV  Landings  Aprox. F  CV 

Abundance  
(1 July,  

40+ mm, 106) 

Landings/ 
Abundance 

Georges Bank 
2003  4,145  0.10  173  0.04  0.14  3,517  0.05 
2004  3,788  0.12  133  0.04  0.15  3,159  0.04 
2005  3,660  0.11  267  0.07  0.15  3,132  0.09 
2006  3,216  0.11  448  0.14  0.15  2,769  0.16 
2007  3,979  0.11  249  0.06  0.15  3,219  0.08 
2008  3,941  0.10  179  0.05  0.14  3,300  0.05 
2009  5,332  0.12  221  0.04  0.15  3,690  0.06 
2010  4,883  0.17  170  0.03  0.19  3,801  0.04 
2011  4,169  0.12  217  0.05  0.15  4,194  0.05 
2012  3,498  0.08  316  0.09  0.13  4,607  0.07 
2013  4,073  0.14  365  0.09  0.17  5,620  0.06 

Mid‐Atlantic 
2003  13,601  0.31  807  0.06  0.33  5,511  0.15 
2004  7,324  0.21  918  0.13  0.23  4,036  0.23 
2005  6,154  0.15  545  0.09  0.18  4,811  0.11 
2006  6,261  0.15  272  0.04  0.18  4,226  0.06 
2007  5,521  0.15  503  0.09  0.18  4,310  0.12 
2008  6,340  0.13  463  0.07  0.16  4,647  0.10 
2009  5,312  0.11  664  0.13  0.15  3,202  0.21 
2010  3,794  0.11  687  0.18  0.15  2,458  0.28 
2011  2,747  0.10  598  0.22  0.14  1,606  0.37 
2012  4,617  0.10  365  0.08  0.14  3,387  0.11 
2013  4,163  0.14  219  0.05  0.17  2,648  0.08 
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Table 4.  Abundance and fishing mortality (estimates from the empirical approach and CASA model to the combined Georges Bank 
plus Mid-Atlantic regions (whole stock). 

Year 

Empirical  CASA 

Abundance  
(Mid‐year,  

40+ mm, 106) 
CV  Landings  Aprox. F  CV 

Abundance  
(1 July,  

40+ mm, 106) 

Landings/ 
Abundance 

Whole stock 
2003  17,746  0.24  980  0.06  0.26  9,028  0.11 
2004  11,112  0.14  1,051  0.09  0.17  7,195  0.15 
2005  9,814  0.11  812  0.08  0.15  7,942  0.10 
2006  9,477  0.11  720  0.08  0.15  6,994  0.10 
2007  9,500  0.10  752  0.08  0.14  7,529  0.10 
2008  10,281  0.09  643  0.06  0.13  7,946  0.08 
2009  10,644  0.08  885  0.08  0.13  6,891  0.13 
2010  8,677  0.11  857  0.10  0.15  6,259  0.14 
2011  6,915  0.08  815  0.12  0.13  5,799  0.14 
2012  8,115  0.07  681  0.08  0.12  7,995  0.09 
2013  8,237  0.10  584  0.07  0.14  8,269  0.07 
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Figure 1.  CVs for total mean catch per tow (all sizes) in the dredge survey during 2003-2013. 
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Figure 2.  Average CVs for mean scallop catch per tow in the dredge survey during 1978-2013 by shell height size group and stock 
area. 
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Figure 3a.  Empirical abundance at length during 2003-2013 in the Mid-Atlantic region with approximate 95% confidence intervals.  
Note that the scales on the y-axis vary.  
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Figure 3b.  Empirical abundance at length during 2003-2013 in the Georges Bank region with approximate 95% confidence intervals.  
Note that the scales on the y-axis vary.   
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Figure 4a.  Empirical abundance and catch at length during 2003-2013 in the Mid-Atlantic region.  Note that the scales on the y-axis 
vary. 
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Figure 4b.  Empirical abundance and catch at length during 2003-2013 in the Georges Bank region.  Note that the scales on the y-axis 
vary.  
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Figure 5a.  Empirical fishing mortality at length during 2003-2013 in the Mid-Atlantic region with approximate 95% confidence 
intervals.  Note that the scales on the y-axis differ (fishing mortality was typically higher in the Mid-Atlantic region). 
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Figure 5b.  Empirical fishing mortality at length during 2003-2013 in the Georges Bank region with approximate 95% confidence 
intervals.  Note that the scales on the y-axis differ (fishing mortality was typically higher in the Mid-Atlantic region). 
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Figure 6a.  Empirical estimates of average size selectivity for the scallop fishery during 2003-2013 in the Mid-Atlantic region.  This 
curve was calculated by pooling data for different years and fitting a single line to show the trend.  Another approach is to average the 
fitted selectivity curves for each year. 
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Figure 6b.  Empirical estimates of average size selectivity for the scallop fishery during 2003-2013 in the Georges Bank region.  This 
curve was calculated by pooling data for different years and fitting a single line to show the trend.  Another approach is to average the 
fitted selectivity curves for each year. 
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Figure 7.  Abundance (left) and fishing mortality estimates (right) from the empirical method and 
the CASA model during 2003-2013 for the Georges Bank (top), Mid-Atlantic (middle) and 
combined (bottom) regions. 
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Figure 8.  Fully recruited fishing mortality  estimates for the Mid-Atlantic (top) and Georges 
Bank (bottom) regions.  The empirical estimates are in blue, CASA estimates are black.
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Appendix B6. NEFSC HabCam survey for sea scallops: survey design, implementation, 
and data analysis. 
 
Jui-Han Chang, Burton Shank, and Dvora Hart.  Northeast Fisheries Science Center, Woods 
Hole MA.4 
 
 

This report contains five stand-alone sections that together describe HabCam gear and 
operations, simulation work used to develop and test survey designs, how the actual surveys 
during 2011-2013 were carried out, and how abundance estimates and size composition for 
2011-2013 used in assessment models were made. 
 
 
1. Introduction to the HabCam survey 
 

HabCam is an underwater vehicle that was originally developed through collaboration of 
commercial fishermen, independent scientists, and staff at the Woods Hole Oceanographic 
Institute as a vehicle for documenting the size and abundance of benthic / demersal organisms 
and mapping sea floor habitats. The vehicle is towed behind a vessel, while actively “flown” 
~2m off the bottom by a pilot.  It collects overlapping, downward facing digital still imagery. 
Between 2005 and 2010, the HabCam group developed and improved this technology and 
successfully performed a number of surveys on the Mid-Atlantic continental shelf, Georges Bank 
and in the Gulf of Maine, primarily using the HabCam_V2 vehicle which preceded the current 
design. The development of the vehicle and many of these surveys were supported by the Sea 
Scallop Research Set-Aside program and the vehicle proved to be appropriate technology for 
assessing sea scallops (NEFSC 2010). In 2009 a paired HabCam / dredge experiment was 
conducted to determine the capture efficiency of the NEFSC survey dredge (probability of 
catching a scallop in the path of the dredge) and in 2011 the HabCam_V2 was used in the 
NEFSC scallop survey to get an estimate of the entire scallop resource on Georges Bank.  
 

With an interest in making a HabCam-type survey a standard part of the sea scallop 
assessment survey, NEFSC secured funds from NOAA Office of Science and Technology and 
contracted WHOI to build a vehicle for NEFSC’s use. This vehicle, (HabCam_V4 or NOAA 
HabCam), completed resource-wide surveys in 2012 and 2013, beginning a new assessment time 
series for sea scallops that is used for the first time in this assessment. The HabCam_V4 vehicle 
is equipped with stereo digital still cameras, altimeters, and a compliment of oceanographic 
sensors including temperature, salinity, water spectrometer, 3D side-scan sonar, and optical 
sensors for dissolved oxygen, cdom, and turbidity. 
 
2. Survey Design 
 

Because the HabCam vehicle collects a constant track of images, data derived from the 
images are autocorrelated and not appropriate for analysis as a random or stratified survey. 
Resource assessments from such data are typically use spatial models including Generalized 
Linear Models (GLMs) and Generalized Additive Models (GAMs) or geostatistical methods 
                                                           
4 First and second coauthors alphabetical. 
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such as kriging (Rivoird et al. 2008). Literature on sampling designs for this type of survey 
comes primarily from literature on acoustic surveys. With geostatistical methods, the uncertainty 
in the estimate at any given location increases with distance from the survey track. As a result, 
evenly spaced grids are optimal for acoustic surveys as the distance from the survey track is 
minimized with even spacing. A second common survey design is a two-stage approach where a 
low resolution survey is first performed to determine the location of high-density aggregations 
and a second high-resolution survey is conducted on the aggregations. The results from two-
stage surveys are post-stratified to account for spatial heterogeneity in survey effort. In both 
cases, geostatistical methods assume that the mean and variance is homogeneous throughout a 
survey stratum. 
 

The HabCam sea scallop survey differs from these situations because adult sea scallops 
are relatively easy to detect and intensively surveyed, do not move long distances, and because 
spatial heterogeneity is primarily driven by management measures and known habitat affinities. 
While geostatistical methods assume a landscape with a stationary mean (Figure 1a), a landscape 
with a higher mean along the center of the landscape (Figure 1b) is more realistic for sea scallops 
because densities typically decrease in habitats deeper and shallower than the optimal habitat for 
a region (Figure 1c). In this case, it may be advantageous to increase sampling effort in the core 
habitats along the center of the survey area. Given a survey track of evenly-spaced transects of 
equal length (Figure 2a) and assuming an underlying variogram model, we can derive a map of 
kriging variances for the survey at each location in the landscape (Figure 2b). If the mean density 
is higher in the center of the landscape instead of stationary, we may assume that the standard 
deviation of the mean is proportional to the mean (similar to a Gamma distribution) and calculate 
an adjusted kriging variance for each location as: 
 

AdjVarx,y = KrVarx,y * [e(CE)]2 (2.1) 
 
Where AdjVarx,y  is the adjusted variance of the estimate at a given location, KrVarx,y is the 
unadjusted variance at the location and e(CE) is the magnitude of the center effect from Figure 1c. 
  

As a proof of concept, we used geostatistical simulation to examine the effect of allowing 
the mean (and variance) to vary across the shelf and longitudinally along the shelf. We first 
simulated varying the mean across the shelf and examined how the survey variances were 
affected by varying (1) the proportion of the effort concentrated along the center of the survey 
area and (2) the length of the survey track. We modeled the cross-shelf gradient as a double-
logistic with higher densities along the center of the study area and the amplitude of the center 
effect varying from 0 (no effect) to 1 (variance is e2 or 7.38 times higher along the center of the 
study area (Figure 3). To assess the effect of increasing sampling intensity along the center of the 
study area, we decreased the length of alternating transects (range from 0 – 100% of the total 
width of the study area) and increased the total number of transects to keep the total survey track 
length constant (Figure 4). We then varied the total survey track length from 1,000 to 4,000 
pixels. For each simulation, we examined the resulting variance maps (i.e. Figure 5) and used the 
sum of the adjusted kriging variance (eq. 2.1) as a relative proxy for the variance of the survey. 
While this is not the true variance of the survey, as the variances are correlated across the 
landscape, we are not aware of established methods for calculating a kriging variance for survey 
areas with non-stationary variances and this should be an effective relative measure for 



 

700 
59th SAW Assessment Report                           B. Sea Scallops-Appendix B6 

comparison purposes. 
 

The adjusted kriging variances varied across center effects and transect lengths (Figure 
6). Optimal short transect lengths decreased as center effects increased and increased as total 
track length increased. The center effect and total track length interacted to produce an optimal 
short transect length. With a track length of 1,000 pixels, increasing the center effects from 0 and 
1 decreased optimal short transect length from 67% to 30%. However, for track lengths of 4,000 
pixels, varying the center effect from 0 to 1 only decreased optimal short transect length from 
92% to 85%. 
 

For a second simulation, we examined the effect of the mean and variance varying 
longitudinally along the survey area (i.e. zonal anisotropy, Figure 7). The zonal effect was 
implemented by dividing the landscape into two zones (upper and lower) and adding an 
additional, longitudinally-oriented logistic trend to the landscape. We then varied the amplitude 
of the longitudinal effect (Zone effect) the spacing of adjacent transects between the two zones, 
and total track length (Figure 8).  
 

The optimal solutions for landscapes with Zone effects placed more transects in the zone 
with higher underlying means and variances (Figure 9). The effect was most notable for shorter 
total track lengths, increasing transect density in the higher mean zone by as much as 300% over 
the lower mean zone. 
 
3. Survey Area and Design for Actual HabCam surveys 
 

The above simulations indicate that the variance of a survey can be decreased by 
alternating the length of survey transects and increasing transect density in areas with known 
higher abundances. These simulation results are used informally in the design of each year’s 
survey but actual survey design is based on researchers’ knowledge of where the current stock 
biomass and incoming cohorts are.  
 

The two stock areas (MAB and GB) are each divided into multiple subregions, based on 
changes in habitat type, habitat orientation (anisotropy), and management boundaries (Figure 10 
and 11). These subregions are used both for designing the survey and for abundance estimation 
from the resulting survey data.  
 

The extent of the survey area is based on an updated analysis of biomass patterns from 
the NMFS dredge and RSA surveys, Vessel Trip Reports, sea scallop observer trips, and Vessel 
Monitoring System data. In general, the current extent of the dredge survey was found to be very 
adequate for covering the scallop resource, though small areas were added to the extent of the 
HabCam survey to capture areas where there was evidence of adequate scallop densities or 
commercial activity.  
 

The survey tracks are constructed in one long track for the MAB and three separate tracks 
for GB. Each track is bounded by a set of subregions. A midline, drawn along the center of 
biomass, runs through each set of subregions. Survey transects are centered around and oriented 
orthogonal to the midline.  
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3.1 Software and procedures used in designing HabCam surveys 

In designing actual surveys, specialized software prompts a user to enter the total effort 
(survey days) to allocate to a track, the relative lengths of the short transects on the track, and the 
transect density offset for each subregion along the track. The software varies the relative 
transect densities and provides a number of alternative tracks of similar lengths for the user to 
choose among, based on appropriate allocation of effort across the subregions, how well each 
track works around complex bathymetric structures, and other logistical considerations.  
 
 
4. Image Acquisition, Processing and Annotation. 
 

The HabCam vehicle is towed along the survey track at speeds from 6 – 7 knots while a pilot 
maintains the unit at an altitude of ~2m off the bottom. Digital still images are generally 
collected at a sufficiently high frequency that ~35% of adjacent images overlap. Collected 
images are initially stored as raw TIFF-formatted images. The raw TIFFs are then light-field and 
color corrected to improve image quality and saved in processed PNG format. Each image is 
named with a unique identifier and metadata for each image is recorded including longitude, 
latitude, time, vehicle depth, bottom depth, and vehicle altitude, roll, and pitch as well as the data 
from the oceanographic sensors. The altitude of each image is critical for determining the field of 
view of the image and measuring objects in the images. As altitude can be measured in multiple 
ways, the value used for a particular image is based on the following list ordered by expected 
accuracy:  

1. Altitude as measured via disparity mapping (parallax) from the stereo images 
2. Altitude as measured by the altimeters on the vehicle 
3. Altitude inferred from the side-scan sonar 

The metadata associated with each image is then stored in a PostgreSQL database and used for 
selecting images for annotation. 
 

We select blocks of images for annotation, termed “assignments”, based on the spatial 
extent of the image set and a target image density. Based on the desired density of images to be 
annotated, we break the survey track into equal length segments and select one image from each 
segment. Individual image selection is biased towards preferred vehicle heights (Gaussian-
weighted, based on known issues with water turbidity or other factors that affect image quality) 
but image selection is otherwise random within each segment.  
 

The selected image list is uploaded to the Postgres database for direct observation and 
annotation using a web-based annotation tool. Additional assignments may be created once an 
assignment is completed if additional images are desired from the same region. In such cases, we 
first remove all images from a buffered region around each image that has already been 
annotated from the pool of available images before the next random subset of images is selected. 
The goal of this is to keep the density of annotated images consistent within subregions along the 
track. 
 

Data on the abundance, size and behavior of scallops are extracted from each image using 
an online annotation tool developed by collaborators at WHOI (Figure 12). Only scallops where 
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the center of the scallop is judged to be inside the image are enumerated. Scallops larger than 
about 35mm (age 2+) are measured by drawing a line over the shell while smaller scallops are 
only marked with a point and counted. Additional data are recorded including confidence in 
identification, swimming, dead, clappers, etc. Image quality may be poor due to turbid waters, 
extremely high or low altitudes, image corruption, or other objects obscuring the bottom. In this 
case, the image can be noted as poor quality and data from this image excluded from derived 
data sets. All annotations, as well as comments on image quality and sediment types, are 
recorded directly to the Postgres database by the annotation tool.  
 

Because scallops are not always oriented normal to the camera or may be partially 
obscured, scallops measurements are either shell heights (umbo to opposite margin) or widths 
(lateral margins), whichever is judged to be more accurate. Shell widths are converted to shell 
heights using a statistical model derived from paired measurements of scallops that were well 
oriented to the camera: 
 

Shell_height = 3.538 + 1.034*(Shell_width) - 0.0003502*(Shell_width)2  (4.1) 
 
Shell height is calculated in pixels based on the start and end coordinates of the annotated line. 
The size of each pixel in an image is calculated from the altitude of the associated image, based 
on tank calibration experiments, and this pixel size is used to convert the shell height to actual 
millimeters. The altitude is also used to calculate the field of view for each image for density 
calculations. 
 

For estimating size frequency distributions and abundance for each year, we constructed 
standardized data sets from the database and posted them to a common location on a network 
drive. The annual data sets include data from both the NEFSC HabCam surveys and from the 
HabCam group RSA surveys, which have to be drawn from multiple databases and corrected 
individually for problems in altitude measurements or other issues. The data sets include the 
metadata from all annotated images of acceptable quality, plus the classification of all scallops 
observed in each image and calculated lengths of for any scallop measured with a line segment. 

 
 
5. Model-based estimation of sea scallop abundance and biomass 
5.1 Introduction and summary 
 

The goal of this section is to assess different model-based methods for estimating total 
abundance and biomass from HabCam and then apply these methods to HabCam data for 2011 - 
2013 data to estimate abundance, biomass and size composition of sea scallops in the Georges 
Bank (GB) and Mid-Atlantic Bight (MAB) assessment regions (Figures 14 and 15). We also 
present design-based method (stratified mean) for this data set as an alternative to model-based 
methods and use it to validate the model-based estimates and CV’s. 
 

Scallop abundance or biomass data from HabCam are highly spatially autocorrelated and 
zero inflated, reflecting the patchiness of scallop distributions and the continuous nature of the 
observations. Thus, model-based estimation methods might be required to extrapolate 
observations along the observed track to larger areas. We used 2013 HabCam biomass data to 
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test 3 geostatistical models: (1) ordinary kriging on spatially averaged data (OK), (2) zero-
inflated Generalized Additive Models on spatially averaged data with kriged model residuals 
(GAM+OK), and (3) zero-inflated Generalized Additive Mixed Models where small scale 
variations are treated as random effects, combined with kriged model residuals (GAMM+OK). 
Effects of scale (neighborhood) size to average the data or scale of random effects was also 
evaluated. Co-located survey data from other gear types (dredge surveys from NEFSC and VIMS 
and video surveys from SMAST) were used for model validation. No single modeling approach 
and scale was consistently superior but GAM+OK performed better than OK and GAMM+OK in 
general.  
 

We then conducted a simulation to evaluate performance of the 3 model-based methods 
along with a design-based method (stratified mean method, SM) and effects of scale size for data 
averaging and random effects. The GAM+OK method with small scale size outperformed the 
other 2 model-based methods and scale sizes in the simulation in terms of accuracy and precision 
of estimating mean and CV in most cases. SM estimates were more accurate and precise than the 
model-based estimates but only when the study region was stratified more correctly than might 
be expected in practice. 
 

Based on the results of 2013 HabCam biomass data analysis and simulations, we selected 
the GAM+OK method to estimate scallop abundance and biomass for the GB and MAB stock 
for 2011 to 2013. SM estimates estimated with careful stratifications are also provided to back up 
the model-based estimates. Following are detailed descriptions of the simulation design, model- 
and design-based methods, simulation results, and procedures to estimate GB and MAB scallop 
abundance and biomass for 2011 to 2013. 

 
 
5.2 Simulation Design 
 

The area covered (domain) of simulated scallop populations was 50 km longitude and 
100 km latitude (roughly the size of Hudson Canyon subregion, Figure 2) with a 100 m grid size. 
The scallop spatial distributions are non-stationary due to the influences of physical and 
biological environment including current, depth, and predator distributions (Brand, 1991). The 
simulated scallop population is therefore assumed to be heterogeneous in global trend (first-order 
effect), combined with stationary second-order effects. We simulated different first-order and 
second-order effects in order to test whether the abundance and biomass estimation methods are 
robust to the type of spatial distributions of the underlying population. 
 

Variations in global mean quantity were simulated using a double logistic function   
  

௜,௝݌ ൌ
ଵ

ଵାୣ୶୮	ሺି௔	ሺ௜ି௕ሻሻ
൅ ଵ

ଵାୣ୶୮	ሺ௔	ቀ௜ି௕ାౣ౗౮ሺ೔ሻ
మ

ቁሻ
	, (5.1) 

 
where ܽ and ܾ parameters determine the shape of the logistic curve, and ݅ and ݆ are the longitude 
and latitude, respectively. The simulated first-order effects are high in the middle and decrease 
logistically toward the left and right edge of the simulation domain (Figure 16). Two types of 
first-order effects were simulated, one narrow but highly dense and the other wide and less dense 
(Figure 16).  
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Second-order effects were simulated as stationary Gaussian random fields with a 

spherical isotropic covariance structure (Cressie 1993) 
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 (5.2) 

 
where ܿ଴, ܿଵ, and ݎ are the nugget, partial sill, and range parameter, respectively. The nugget/sill 
ratio (

௖బ
௖బା௖భ

) determines randomness and ݎ determines aggregations size of the second-order 

effects. We simulated combinations of 2 levels of nugget/sill ration and 2 levels of the range 
parameter resulting in 4 types of second-order effects: small aggregation, large aggregation, 
small aggregation with a large random noise, and large aggregation with a large random noise 
(Figure 17). We chose the parameter values based estimates from actual HabCam data.   
 

Scallop distributions are patchy, resulting in HabCam data being highly zero-inflated 
(Table 1). To reflect the patchiness of scallop distribution, for each second-order realization, 
densities smaller than 90th percentile were set to zero. The zero-inflated second-order effects 
were combined with first-order effects to produce realistic simulated scallop distributions (Figure 
18).  
 

We simulated combinations of 2 first-order and 4 second-order effects resulting in 8 
types of simulated population distributions. Thirty realizations were generated for each 
population type. Total abundance and biomass  of each realization was scaled to equality across 
realizations. Each realization was surveyed using 30 different tracks. Shape and direction of 
tracks was designed to mimic the actual HabCam survey design. 
 

Model-based and designed-based methods were used to estimate total biomass and 
abundance for the simulated populations. These estimation methods were evaluated using 
percent bias and percent root mean square error (RMSE) 
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∑೙೔సభ ሺ೅̂೔షഋሻ

೙

ఓ
  (5.3) 

 

%	RMSE ൌ
ට∑

೙
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మ

೙

ఓ
,  (5.4) 

where ܶ̂௜ is the estimated total biomass or abundance for sample set ݅, ߤ is the true population 
size, and ݊ is the total number of sample sets analyzed. Percent bias and percent RMSE of CVs 
for the precision of model estimates were also evaluated. The method that produced the least 
biased and most precise estimates was selected to analyze the actual HabCam data. 
 
5.3 Model-Based Estimation 
 

Kriging is one of the most widely used geostatistical method for spatial interpolation 
(Webster and Oliver 2001). We tested performance of 3 different kringing methods including 
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OK, GAM+OK, and GAMM+OK on the simulated scallop populations. OK is a standard version 
of the kriging models with the assumption of a constant mean and consideration of variation and 
distance between sample points (Hengl 2009, Webster and Oliver 2001). Although the constant 
mean assumption might not be reasonable for scallops, the simulation tests are necessary to 
determine whether the observed non-stationary pattern can be modeled as an autocorrelation 
among errors with a constant mean or a trend with mean changing with variance.  
 

Isotropy and anisotropy is the variation of scallop abundance or biomass being identical 
or directionally dependent. It is not clear whether the samples are isotropic or anisotropic 
although actual observations indicate that first-order effects the simulated populations should 
have the largest variations along the horizontal axis. Therefore, we built both the isotropic and 
anisotropic models and selected the final OK model using RMSE 

 

RMSE ൌ ට∑೙೔సభ ሺ௭̂೔ି௭೔ሻ
మ

௡
  (5.5) 

 
Total abundance or biomass (ܶ) and its variance were estimated as 

 
ܶ̂ ൌ A∑௡

௜ୀଵ  ௜  (5.6)ݖ̂
 

Varሺܶ̂ሻ ൌ Aଶ ∑௡
௜ୀଵ ∑

௡
௝ୀଵ Covሺ̂ݖ௜,  ௝ሻ,  (5.7)ݖ̂

 
where ̂ݖ௜ is the kriging estimates at location ݅ and ܣ is the grid size.  

Regression kriging (RK) extends the OK to account for a global trend, which can be 
estimated by apply a regression model (e.g. GAM or GLM) to a series of ancillary variables (e.g. 
depth, latitude or longitude) then applying OK to the residuals of the regression model (Hengl 
2009, Odeh et al. 1995). The final predictions of RK are obtained by summing the regression 
predicted values and the kriged residuals. This approach was criticized by Cressie (1993) and 
Lark et al. (2006) because the variogram estimates of the random component of spatial variation 
are theoretically biased. Generalized least squares and residual maximum likelihood-empirical 
best linear unbiased predictor are two potential solutions (Lark et al. 2006). However, Kitanidis 
(1993) and Minasny and McBratney (2007) showed that although these methods are theoretically 
preferable to RK, they did not substantially improve model predictions.  We therefore used the 
RK approach. 
 

Scallop data from the HabCam survey are highly spatially autocorrelated and zero 
inflated, reflecting the patchiness of scallop distributions. Therefore, we estimated the first order 
effects (over relatively large geographic areas) using a two-stage hurdle model which models the 
probability that scallops are found in a sample (presence/absence) separately from the density 
given that at least one scallop was found (Barry and Welsh, 2002).  Predictions from the two 
models are combined to make the complete estimates of abundance and biomass.  Hurdle model 
results were usually modified further to account for second order effects over smaller geographic 
areas as described below. We tested a hurdle GAM on data averaged within segments along the 
tracks (to reduce the autocorrelation and zero-inflation) and a hurdle GAMM where the fine-
scale variations within track segments were treated as random effects. A quasi-binomial 
distribution was assumed for the presence/absence model and a quasi-Poisson distribution for the 
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positive model. The first-order effects were estimated using an interaction term of latitude and 
longitude for both GAM and GAMM. OK was performed on the residuals using the same 
algorithm described above. Total abundance and biomass of GAM+OK and GAMM+OK model 
estimates were estimated using  

 
ܶ̂ ൌ A∑௡

௜ୀଵ ௜ݕ௜̂ݔ̂ ൅  ௜,  (5.8)ݖ̂
 

where ̂ݔ௜ is the probability of presense estimate, ݕ௜ is the positive estimate, ̂ݖ௜ is the kriged 
residual at location ݅. By assuming that ̂ݔ and ̂ݕ are independent, the variance of the ܶ̂ was 
calculated using 
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 (5.9) 
 

Effects of segment length to average the data or determine random effects along the 
tracks was evaluated. The dense scallop aggregations occurred at approximately 400 to 900 m 
(NESFC 2010) and therefore we tested 3 segment lengths, 750, 1500, and 2,250 m. These 
segment lengths were also used to define the grid size A.  
 
5.4 Design-Based Estimation  
 

We tested a SM method to estimate total abundance and biomass from the simulated data. 
Only horizontal transects were used in the SM estimation because variance of these transects 
were different from the vertical transects. Horizontal transects were post-stratified into 2 strata 
based on high and low first-order effects (Figure 19). Mean and its variance of the simulated 
scallops (ݐ) by segment (݆) and stratum (݅) were calculated by 
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where ݊௜,௝ is the number of images by segment and stratum. Total abundance and biomass 
estimates (ܶ̂) and variance were estimated as 

 

ܶ̂ ൌ A∑ S௜
ଶ
௜ୀଵ

∑
೙೔
ೕసభ ௧̅೔,ೕ

௡೔
  (5.12) 

 

Varሺܶ̂ሻ ൌ Aଶ ∑ S௜
ଶଶ

௜ୀଵ ∑௡೔
௝ୀଵ

୚ୟ୰ሺ௧̅೔,ೕሻ

௡೔
మ ,	 (5.13) 

 
where ݊௜ is the number of segments by stratum ݅, and S௜ is the size of stratum ݅.  
 

The simulation domain was well-stratified based on the first-order trend; however, we do 
not have the same information when dealing with the real data which tend to complicated as 
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shown below using real data. We tested whether the SM estimates are sensitive to the 
stratification by enlarging (Stratified Mean Wide, SMW) and shrinking (Stratified Mean Narrow, 
SMN) the central high density stratum by 20% (Figure 19) and estimated total abundance and 
biomass under the original (incorrect) assumptions about stratum size. 
 
5.5 Simulation Results 
 

Proportion of converged model runs was 99% for GAM+OK and OK but 80-93% for 
GAMM+OK (Table 2). Percent bias and percent RMSE showed that GAM+OK with data 
averaged by 750 m (scale) is the best way to estimate the scallop biomass among all the model-
based methods. For abundance, the method that produce the least biased estimates is GAM+OK 
with 1500 m scale, though it only outperformed the GAM+OK with 750 m scale by 0.006%. 
When both the bias and precision of the estimates are taking into account, GAM+OK with 750 m 
is the best way to estimate the scallop abundance (lowest percent RMSE, Table Error! Reference 
source not found.). The GAM+OK with 750 m segments also produce the least biased CV 
estimates for both biomass and abundance estimates (Table 2).   
  

Percent bias and percent RMSE of the SM estimates are smaller than all the model-based 
estimates (except for the percent RMSE of the abundances estimated using GAM+OK with 750 
m) but the CVs were highly underestimated. Beside the problems of estimating CVs, SM 
estimates were sensitive to the quality of post stratification. SMW and SMN estimates were 
biased and worse than all the model-based estimates.  
 

Based on the simulation results, we concluded that GAM+OK method with data averaged 
over 750 m segments was the best way to estimate total abundance and biomass using HabCam 
data. SM estimates with careful stratifications were also provided in order to validate the model-
based estimates although variances for the SM method are probably understated. 
 
5.6 Analysis of actual HabCam data for 2011-2013 
 

The HabCam data were collected during 2011-2013 in GB and durng 2012-2013 in 
MAB. We divided the GB and MAB stock region into 14 subregions based on geographic 
characteristics and management areas and analyzed them separately because their topology, 
orientation and covariance structures differ (Figures 14 and 15).  
 

Images with altitudes higher than 4 m and scallops with measured shell heights smaller 
than 40 mm were excluded for estimating scallop abundance and biomass. The shell height (ܵܪ) 
measures were converted to meat weights (g) (ܹܯ) based Hennen and Hart (2012)  

 
MAB:	ܹܯ ൌ	െ16.88 ൅ 4.64log	ሺܵܪሻ ൅ 1.57log	ሺܦሻ െ 0.43 logሺܵܪሻ log	ሺܦሻ	  (5.14) 

 
ܹܯ	:ܤܩ ൌ 	14.38 ൅ 2.826 logሺܵܪሻ െ 0.529 logሺܦሻ െ 5.98 logሺܮሻ,  (5.15) 

 
where D is depth and L is latitude. The counts and weight data were summed by image and 
standardized into abundance and biomass per m2 by field of view of the image. A summary of 
the HabCam data used by subregion for 2011-2013 is listed in Table 1.  
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As described above and based on the simulation results, the GAM+OK method with 750 

m segments was used to estimate total abundance and biomass for each subregion. For 
estimation purposes, we constructed a 1-km buffer zone around each subregion and used the data 
within the buffered region to build the subregional models. An average of weight or count (t) by 
image (j) and distance group (i) weighted by field of view (f) was calculated for every 750 m 
segment along the tracks 

 

௜̅ݐ ൌ ∑௡೔
௝ୀଵ

௙೔,ೕ௧೔,ೕ

∑
೙೔
ೕసభ௙೔,ೕ

,  (5.16) 

 
The ݐ௜̅ was weighted by both variation (ݏ) and number of images (݊) in the hurdle GAM using   

 

௜ݓ ൌ
௦೔ି௦ሺభሻ

ଶሺ௦ሺ೙೔ሻି௦ሺభሻሻ
൅

௡೔ି௡ሺభሻ
ଶሺ௡ሺ೙೔ሻି௡ሺభሻሻ

  (5.17) 

 
A hurdle GAM with a quasi-binomial distribution for the presence/absence model and 

quasi-Poisson distribution for the positive model was used to estimate the first-order trend with 
respect to latitude, longitude, and depth. Depth is correlated with latitude and / or longitude in 
some of the subregions. To prevent potential problems cause by collinearity, latitude and 
longitude were transformed into composite variables: latitude plus longitude and half of the 
latitude or longitude plus longitude/latitude. A list of models with the different combination of 
covariates is supplied in Table 3. Depth is included in all of the candidate models because it is 
one of the most important variables that affecting scallop distributions. The maximum amount of 
knots for interactions between covariates in GAM models was limited to 15 (reduced to 10 for 
some of the subregions) and 10 for the single terms to prevent over-fitting. We selected the final 
first-order model using the RMSE from a 10-fold cross validation.  
 

OK were performed on the GAM residuals. We tested isotropic and a series of 
anisotropic (from 0 to 180 by 20 degrees) residual OK models and selected the final OK model 
using the median standard error (MedSE). 

 
MedSE ൌ ∑௡

௜ୀଵ Medianሺ̅ݐˆ௜ െ  ௜̅ሻ  (5.18)ݐ
 

GAM and OK final models by subregion and year are listed in Table 4. 
 

For the SM analysis we used only the data within the subregion. The transects were 
separated into segments based on the following criteria: parallel or perpendicular to depth 
contour, distance between points (2 km), depth strata, and distance along the transect (10 km). 
We first separated transects into segments at locations where the direction of the transects 
changed between parallel and perpendicular to the depth contour. These segments were further 
separated into smaller ones by depth strata or any location where the distance of any two points 
in the segment was greater than 2 km. The resulting segments were again broken into smaller 
ones if length where segments were longer than 10 km. An example of segmentations of the 
HabCam data (abundance data for 2013) is in Figure 20. 
 

Thresholds for the depth strata were estimated using a maximum likelihood based change 
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point analysis (Killick et al. 2010). A GAM with a quasi-Poisson error distribution was built for 
each subregion. The depth partial residuals from the GAM were used in the change point 
analysis to estimate the depth thresholds. The thresholds were detected based on changes in 
mean or variance or both mean and variance of the partial residuals. Each subregion is post-
stratified into a maximum of 3 depth strata. The depth stratification was done for each year by 
subregion and separately for abundance and biomass data.  
 

The mean count or weight and its variance was estimated by segment and stratum using 
equations 10 and 11 and weighted by total field of view (݂) and length of the segment (݀) to 
estimate the total abundance or biomass and its variance 

 
ܶ̂ ൌ A∑ଷ

௜ୀଵ S௜ ∑
௡೔
௝ୀଵ w௜,௝ݐ௜̅,௝  (5.19) 

 
Varሺܶ̂ሻ ൌ Aଶ ∑ଷ

௜ୀଵ S௜
ଶ ∑௡೔

௝ୀଵ w௜,௝
ଶ Varሺݐ௜̅,௝ሻ,  (5.20) 

 
where ݊௜ is number of segments within depth stratum ݅, S௜ is the size of depth stratum ݅, and ݓ௜,௝ 
is the weighting factor 

 

௜,௝ݓ ൌ
ௗ೔,ೕିௗ೔,ሺభሻ

ଶሺௗ೔,ሺ೙೔ሻሻିௗ೔,ሺభሻሻ
൅

௙೔,ೕି௙೔,ሺభሻ
ଶሺ௙೔,ሺ೙೔ሻି௙೔,ሺభሻሻ

  (5.21) 

 
The resulting GAM+OK and SM abundance and biomass estimates and CV’s by subregion are 
listed in Table 5 and by stock in Table 6 for 2011-2013.  
 
5.7 Size composition data for assessment modeling 
 

Calculating scallop size frequency distributions from HabCam data for use in this 
assessment required re-stratifying Georges Bank for each year for appropriate spatial expansions 
because inclusion of the RSA surveys resulted in very high densities of annotated images in 
localized areas (Figure 13). A simple union of the sea scallop strata and HabCam estimation 
areas was sufficient for the Mid Atlantic in 2012 and 2013 as there were no RSA surveys in this 
region. Based on these stratifications, we derived stratified size frequency distributions by 
calculating the density of scallops within each strata and size class, weighted these densities by 
strata area, and averaging across the region.  No adjustments for measurement errors were made 
although such measurement errors in the two optical surveys for sea scallops (HabCam and 
SMAST) may have standard deviations on the order of 1 cm.  Instead, this type of error is 
accommodated in the CASA stock assessment model as predicted population length distributions 
are transformed into predicted length composition observations (Jacobson et al. 2010). 
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Table 1: Sample size, percent zero, mean weight and count per m2 of for HabCam data by 
regions during 2011-2013. 
 
 
  Stock Year Subregion Sample Size % Zero Meat Wt (g/m2) Meat Ct (m2)

GB 2011 CA1 1942 0.86 15.09 0.39
GB 2011 CA2_N 213 0.91 26.93 1.11
GB 2011 CA2_S 614 0.96 3.22 0.1
GB 2011 GSC_NW 1022 0.83 21.31 0.56
GB 2011 GSC_SE 677 0.97 24.67 0.42
GB 2011 NF 797 0.96 7.77 0.24
GB 2011 NLS 349 0.94 8.48 0.25
GB 2011 SF 554 0.99 2.34 0.08
GB 2012 CA1 660 0.91 6.18 0.35
GB 2012 CA2_N 1382 0.52 27.95 0.91
GB 2012 CA2_S 1415 0.93 3.34 0.12
GB 2012 GSC_NW 735 0.77 8.5 0.47
GB 2012 GSC_SE 276 0.94 5.42 0.23
GB 2012 NF 1486 0.82 22.84 0.75
GB 2012 NLS 298 0.87 5.85 0.26
GB 2012 SF 982 0.96 3.83 0.14
GB 2013 CA1 2054 0.95 1.54 0.07
GB 2013 CA2_N 1015 0.61 21.83 0.51
GB 2013 CA2_S 476 0.86 2.14 0.29
GB 2013 GSC_NW 953 0.86 2.99 0.15
GB 2013 GSC_SE 676 0.95 1.77 0.07
GB 2013 NF 1818 0.93 11.34 0.28
GB 2013 NLS 322 0.85 2.8 0.13
GB 2013 SF 491 0.84 2.05 0.3
MAB 2012 DMV_VB 753 0.9 0.84 0.11
MAB 2012 ET 665 0.85 1.28 0.19
MAB 2012 HC 1159 0.9 1.66 0.15
MAB 2012 HCnr 732 0.93 1.45 0.1
MAB 2012 HCsr 619 0.92 1.86 0.14
MAB 2012 LI 486 0.95 1.24 0.07
MAB 2013 DMV_VB 561 0.91 1.93 0.17
MAB 2013 ET 922 0.87 4.25 0.35
MAB 2013 HC 1114 0.96 2.02 0.18
MAB 2013 HCnr 657 0.95 1.55 0.08
MAB 2013 HCsr 585 0.96 1.7 0.14
MAB 2013 LI 608 0.96 1.55 0.08
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Table 2: Percent bias, CV, percent RMSE, estimated CV and number of converged sample runs 
for biomass and abundance estimates by segment sizes and estimation methods. 
 
Model 
Type 

Scale % Bias CV 
% 

RMSE 
Estimated 

CV 
# 

Runs 
% 

Bias 
CV 

% 
RMSE 

Estimated 
CV 

# 
Runs 

GAM 750 0.048 0.194 0.209 0.191 7194 0.038 0.167 0.177 0.16 7187 
GAMM 750 0.088 0.19 0.225 0.308 6699 0.069 0.165 0.189 0.249 6106 
OK 750 0.136 0.195 0.26 0.289 7196 0.098 0.173 0.214 0.241 7182 
GAM 1500 0.052 0.276 0.295 0.173 7198 0.033 0.188 0.197 0.154 7195 
GAMM 1500 0.088 0.192 0.227 0.465 6305 0.066 0.167 0.19 0.507 5774 
OK 1500 0.173 0.385 0.484 0.272 7184 0.113 0.288 0.34 0.225 7194 
GAM 2250 0.056 0.227 0.246 0.16 7199 0.036 0.206 0.198 0.156 7199 
GAMM 2250 0.09 0.193 0.228 0.559 6342 0.063 0.206 0.19 0.651 5953 
OK 2250 0.178 0.339 0.438 0.259 7199 0.126 0.206 0.415 0.213 7199 
SM -0.002 0.193 0.193 0.09 7200 0.001 0.206 0.181 0.064 7200 
SMN 0.219 0.233 0.359 0.091 7200 0.168 0.206 0.294 0.068 7200 
SMW   0.13 0.201 0.262 0.094 7200 0.085 0.206 0.216 0.067 7200 
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Table 3: List of GAMs tested in the 10-fold cross validation. 
 

GAM Models 

s(Longitude,Latitude,k=15)+s(Depth) 

s(Latitude,Depth,k=15) 

s(Longitude,Depth,k=15) 

s(LatPlusHalfLong,Depth,k=15) 

s(HalfLatPlusLong,Depth,k=15) 

s(LatPlusLong,Depth,k=15) 

s(Latitude)+s(Depth) 

s(Longitude)+s(Depth) 

s(LatPlusHalfLong)+s(Depth) 

s(HalfLatPlusLong)+s(Depth) 

s(LatPlusLong)+s(Depth) 

s(Latitude)+Depth 
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Table 4: List of first-order and second-order models for the biomass and abundance estimates of 
GB and MAB subregions for 2011 to 2013. 
 

Stock Year Subregion GAM (Biomass) GAM (Abundance) 
OK 

(Biomass) 
OK (Abundance) 

GB 2011 CA1 s(HalfLatPlusLong) + s(Depth) s(HalfLatPlusLong) + s(Depth) No angle Angle: 100 

GB 2011 CA2_N s(LatPlusLong) + s(Depth) s(LatPlusLong) + s(Depth) Angle: 0 No angle 

GB 2011 CA2_S s(Longitude, Depth, k = 15) s(Longitude, Depth, k = 15) No angle Angle: 160 

GB 2011 GSC_NW s(Longitude, Latitude, k = 15) + s(Depth) s(LatPlusLong) + s(Depth) No angle No angle 

GB 2011 GSC_SE s(Latitude, Depth, k = 10) s(Latitude, Depth, k = 15) No angle Angle: 140 

GB 2011 NF s(LatPlusLong) + s(Depth) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 60 No angle 

GB 2011 NLS s(Longitude, Latitude, k = 15) + s(Depth) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 120 Angle: 160 

GB 2011 SF s(Latitude) + Depth s(LatPlusHalfLong, Depth, k = 15) Angle: 160 No angle 

GB 2012 CA1 s(HalfLatPlusLong) + s(Depth) s(HalfLatPlusLong) + s(Depth) Angle: 160 No angle 

GB 2012 CA2_N s(Longitude, Latitude, k = 15) + s(Depth) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 100 Angle: 60 

GB 2012 CA2_S s(Latitude, Depth, k = 15) s(Latitude, Depth, k = 15) Angle: 40 No angle 

GB 2012 GSC_NW s(Latitude) + s(Depth) s(LatPlusLong) + s(Depth) No angle Angle: 0 

GB 2012 GSC_SE s(HalfLatPlusLong) + s(Depth) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 60 Angle: 20 

GB 2012 NF s(Longitude, Latitude, k = 15) + s(Depth) s(Longitude, Latitude, k = 15) + s(Depth) No angle No angle 

GB 2012 NLS s(HalfLatPlusLong) + s(Depth) s(HalfLatPlusLong) + s(Depth) Angle: 120 Angle: 80 

GB 2012 SF s(LatPlusLong, Depth, k = 15) s(Longitude, Latitude, k = 15) + s(Depth) No angle Angle: 40 

GB 2013 CA1 s(Longitude, Latitude, k = 15) + s(Depth) s(Longitude, Depth, k = 15) Angle: 120 No angle 

GB 2013 CA2_N s(Longitude, Latitude, k = 15) + s(Depth) s(Longitude, Latitude, k = 15) + s(Depth) No angle No angle 

GB 2013 CA2_S s(Longitude, Latitude, k = 15) + s(Depth) s(Latitude, Depth, k = 10) Angle: 0 Angle: 160 

GB 2013 GSC_NW s(Latitude) + s(Depth) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 0 Angle: 0 

GB 2013 GSC_SE s(Longitude, Latitude, k = 15) + s(Depth) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 160 Angle: 20 

GB 2013 NF s(Longitude, Latitude, k = 15) + s(Depth) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 160 Angle: 160 

GB 2013 NLS s(Longitude, Latitude, k = 15) + s(Depth) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 0 Angle: 160 

GB 2013 SF s(LatPlusLong, Depth, k = 15) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 20 No angle 

MAB 2012 DMV_VB s(Longitude, Latitude, k = 15) + s(Depth) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 60 Angle: 60 

MAB 2012 ET s(Longitude, Latitude, k = 15) + s(Depth) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 80 No angle 

MAB 2012 HC s(Longitude, Latitude, k = 15) + s(Depth) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 160 No angle 

MAB 2012 HCnr s(LatPlusHalfLong, Depth, k = 15) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 140 Angle: 100 

MAB 2012 HCsr s(Longitude, Latitude, k = 15) + s(Depth) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 0 Angle: 60 

MAB 2012 LI s(Latitude) + s(Depth) s(Latitude) + s(Depth) Angle: 100 Angle: 0 

MAB 2013 DMV_VB s(LatPlusLong) + s(Depth) s(LatPlusLong) + s(Depth) No angle Angle: 20 

MAB 2013 ET s(Longitude, Latitude, k = 15) + s(Depth) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 60 No angle 

MAB 2013 HC s(Longitude, Latitude, k = 15) + s(Depth) s(LatPlusHalfLong) + s(Depth) No angle Angle: 120 

MAB 2013 HCnr s(Latitude) + s(Depth) s(Latitude) + s(Depth) Angle: 100 Angle: 40 

MAB 2013 HCsr s(Longitude, Latitude, k = 15) + s(Depth) s(LatPlusHalfLong, Depth, k = 10) No angle No angle 

MAB 2013 LI s(LatPlusLong, Depth, k = 15) s(Longitude, Latitude, k = 15) + s(Depth) Angle: 0 Angle: 40 
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Table 5: Abundance and biomass and its CVs estimated using GAM+OK and SM methods by 
subregions for 2011 to 2013. 
 

Number (million) Weight (mt) 

Stock Year Subregion SM GAM+OK 
SM 
CV 

GAM+OK 
CV 

SM GAM+OK 
SM 
CV 

GAM+OK 
CV 

GB 2011 CA1 1151.70 1220.70 0.02 0.92 41772.14 42648.48 0.01 0.05 

GB 2011 CA2_N 406.92 409.21 0.05 0.07 8325.85 12797.17 0.05 0.06 

GB 2011 CA2_S 215.35 338.48 0.08 0.35 8882.94 10237.32 0.07 0.29 

GB 2011 GSC_NW 1480.93 1289.01 0.04 0.17 32578.17 21675.43 0.04 0.15 

GB 2011 GSC_SE 79.21 75.00 0.12 0.77 3578.14 2051.35 0.14 1.50 

GB 2011 NF 336.35 201.78 0.10 0.09 5002.90 4631.38 0.08 1.70 

GB 2011 NLS 218.19 159.66 0.07 0.06 7285.42 6224.57 0.07 0.17 

GB 2011 SF 103.55 138.22 0.12 1.86 2778.85 2553.07 0.20 3.05 

GB 2012 CA1 489.46 763.04 0.08 0.13 10102.43 11744.98 0.08 0.29 

GB 2012 CA2_N 659.49 568.81 0.02 0.09 19660.00 21527.78 0.02 0.02 

GB 2012 CA2_S 257.40 372.81 0.09 0.07 9803.77 9590.06 0.08 0.16 

GB 2012 GSC_NW 1401.52 1721.65 0.05 0.04 25584.05 26266.07 0.05 0.22 

GB 2012 GSC_SE 97.12 65.23 0.30 0.23 2390.65 4359.93 0.60 0.30 

GB 2012 NF 375.65 259.75 0.05 0.09 8809.68 5919.12 0.05 0.23 

GB 2012 NLS 275.23 256.81 0.14 0.44 8139.02 7111.74 0.16 0.14 

GB 2012 SF 447.59 634.37 0.11 1.00 9534.90 7519.81 0.12 0.17 

GB 2013 CA1 223.26 434.47 0.07 0.05 4479.75 6313.61 0.09 1.09 

GB 2013 CA2_N 358.69 279.35 0.03 0.03 15818.66 12027.82 0.03 0.04 

GB 2013 CA2_S 545.50 1026.61 0.04 0.09 5594.88 5445.98 0.10 0.05 

GB 2013 GSC_NW 471.15 501.50 0.05 0.47 8518.39 8875.60 0.06 0.31 

GB 2013 GSC_SE 78.82 57.64 0.16 0.90 1934.28 2281.77 0.21 0.08 

GB 2013 NF 135.35 175.20 0.06 1.40 3413.10 4206.02 0.09 2.87 

GB 2013 NLS 227.46 188.51 0.12 0.07 4519.21 4039.83 0.11 0.03 

GB 2013 SF 1521.91 1385.35 0.06 0.05 10405.12 6480.77 0.09 0.18 

MAB 2012 DMV_VB 487.11 340.30 0.06 0.09 3563.73 2657.57 0.08 0.08 

MAB 2012 ET 1069.29 1431.26 0.06 0.02 7872.55 7455.85 0.06 0.68 

MAB 2012 HC 1056.73 1417.64 0.05 0.02 12865.32 13196.17 0.07 0.10 

MAB 2012 HCnr 497.09 616.72 0.11 0.99 8320.79 8607.06 0.12 0.03 

MAB 2012 HCsr 418.46 435.87 0.13 0.15 6398.27 6531.35 0.12 0.03 

MAB 2012 LI 637.03 660.37 0.11 0.04 11553.18 10748.32 0.11 0.25 

MAB 2013 DMV_VB 594.70 529.23 0.07 0.09 5928.37 5742.01 0.05 0.05 

MAB 2013 ET 1607.36 1555.18 0.04 0.04 20500.36 19429.08 0.04 0.05 

MAB 2013 HC 1324.67 1091.30 0.08 0.16 9953.54 10758.67 0.09 0.05 

MAB 2013 HCnr 644.33 502.73 0.26 0.48 8899.89 9953.83 0.14 0.78 

MAB 2013 HCsr 262.77 266.72 0.27 0.40 5107.50 4946.65 0.26 0.11 

MAB 2013 LI 630.57 665.43 0.09 0.10 11925.31 10655.17 0.10 0.06 
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Table 6: Abundance and biomass and its CVs estimated using GAM+OK and SM methods by 
stocks for 2011 to 2013. 
 

Number (million) Weight (mt) 

Stock 
Management 

Area 
Year SM GAM+OK 

SM 
CV 

GAM+OK 
CV 

SM GAM+OK 
SM 
CV 

GAM+OK 
CV 

GB Close 2011 1992.16 2128.05 0.02 0.53 66266.35 71907.54 0.02 0.06 
GB Close 2012 1681.58 1961.46 0.04 0.08 47705.22 49974.57 0.04 0.08 
GB Close 2013 1354.91 1928.94 0.03 0.05 30412.50 27827.24 0.03 0.25 
GB Open 2011 2000.04 1704.01 0.04 0.20 43938.06 30911.23 0.03 0.39 
GB Open 2012 2321.88 2681.00 0.04 0.24 46319.28 44064.93 0.05 0.14 
GB Open 2013 2207.23 2119.68 0.04 0.17 24270.90 21844.16 0.05 0.57 
GB Total 2011 3992.20 3832.06 0.02 0.31 110204.42 102818.77 0.02 0.12 
GB Total 2012 4003.46 4642.46 0.03 0.14 94024.50 94039.50 0.03 0.08 
GB Total 2013 3562.13 4048.62 0.03 0.09 54683.40 49671.39 0.03 0.29 
MAB Total 2012 4165.70 4902.15 0.03 0.13 50573.84 49196.34 0.04 0.12 
MAB Total 2013 5064.39 4610.57 0.05 0.07 62314.98 61485.41 0.04 0.13 
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Figure 1. Hypothetical landscapes for (a) a landscape with a stationary mean, (b) a biased 
landscape with a higher mean along the center, and (c) the bias applied to landscape a to produce 
landscape b. In all plots, densities are higher in lighter-colored pixels. 
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Figure 2 (a) A regularly spaced survey track across a rectangular survey area, (b) map of kriging 
variance derived from the survey track and an assumed underlying variogram model describing 
the data, (c) adjusted kriging variances resulting from applying the underlying trend from Figure 
1c to (b). 
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Figure 3. Levels of center effect used in simulations and resulting effects on the local standard 
deviation of the mean. 
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Figure 4a. Alternative survey configurations, alternating the length of transects along the track 
and keeping total survey length constant. Short transect lengths are (a) 0%, (b) 20%, (c) 40%, (d) 
60%, (e) 80%, and (f) 100% of the length of the long transects. 
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Figure 5. Variance maps for the survey tracks in Figure 4 with an applied center effect. Lighter 
colors indicate higher areas of variance. 
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Figure 6. Adjusted kriging variances for different center effects (CE), short transect lengths and 
total survey track lengths (TL). Optimal solutions for each combination are marked with a dotted 
vertical line and labeled.  
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Figure 7. Comparison of survey landscapes without (a and b) and with (c and d) zonal anisotropy 
effects. Figures a and c represent the underlying trend in the mean while b and d represent the 
resulting simulated landscapes. 
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Figure 8. Example of varying transect density between zones and resulting variance maps for a 
simulated landscape with an underlying trend similar to C-7c. The survey track is represented in 
white. Lighter colors indicate higher variances. 
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Figure 9. Zonal effects on transect density allocation. Higher “Transect Density Offests” 
represent the placement of proportionally more transects in the high density zones. Optimal 
solutions for each simulation set are labeled and marked with a dotted line. 
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Figure 10. HabCam survey area (solid green line) compared to NEFSC scallop survey core strata (dashed blue line) 
in the MAB region. Subregions used for allocating survey effort and abundance estimation are: 
LI – Long Island, HC_NR – Hudson Canyon North Rim, HC_SR Hudson Canyon South Rim, 
HCCA – Hudson Canyon Closed Area, ET – Elephant Trunk, and DMV – DelMarVa. 
  



 

727 
59th SAW Assessment Report                           B. Sea Scallops-Appendix B6 

 
Figure 11. HabCam survey area (solid green line) compared to NEFSC scallop survey core strata 
(dashed blue line) for Georges Bank. Subregions used for allocating survey effort and abundance 
estimation are: GSC_NW – Great South Channel Northwest, NLCA – Nantucket Lightship 
Closed Area, GSC_SE – Great South Channel Southeast, CA1 – Closed Area 1, NF – Northern 
Flank, CA2_N – Closed Area 2 North, CA2_S – Closed Area 2 South, and SF – Southern Flank. 
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Figure 12. Screen image showing the web-based annotation tool for counting and measuring 
scallops from HabCam images. 
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Figure 13 Example re-stratification of Georges Bank used for 2013 size frequencies: (a) open 
and closed areas combined and (b) open and closed areas separate. 
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Figure 14: Subregions of the GB scallop stock area used in the HabCam survey. 
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Figure 15: Subregions of the MAB scallop stock area used for the HabCam survey. 
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Figure 16: The two types of first-order effects used to simulate scallop populations: a narrow but 
highly dense first-order effect (left) and a wide but relatively less dense first-order effect (right). 
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Figure 17: The four types of second-order trends tested to simulate scallop populations: large 
aggregations, small aggregations, large aggregations with a high random noise, and small 
aggregations with a high random noise (from left to right). 
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Figure 18: Example simulated scallop population distributions with an over-layed sampling 
track. 
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Figure 19: Alternative types of stratifications used for stratified mean estimations. 
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Figure 20:  Transect segmentation for stratified mean estimation and the 2013 survey based on 
orientation to depth contours and  distance between points (2 km) (left) and depth strata (center).  
The final combined segmentation is on the far right for GB (upper panels) and MAB (lower 
panels). 
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Appendix B7. Assessment of the sea scallop resource in the Northern Gulf of Maine 
management area 
 
Samuel B. Truesdell (University of Maine, Orono, ME); Kevin H. Kelly (Maine Department of 
Marine Resources, W. Boothbay Harbor, ME); and Yong Chen (University of Maine, Orono, 
ME). 
 
Summary 

The sea scallop (Placopecten magellanicus) fishery in the Northern Gulf of Maine 
management area (NGOM) occurs in federal waters and is managed by the New England Fishery 
Management Council. The NGOM resource and associated fishery are locally important but 
amount to a small portion of the total stock and less than 0.1% of total landings. The fishery is 
managed by a TAC independently of the rest of the EEZ sea scallop stock. Management of the 
NGOM fishery does not involve biological reference points as targets or thresholds.   

A cooperative survey was carried out by the Maine Department of Marine Resources and 
University of Maine during May-June of 2012.  Based on survey results, estimated biomass of 
NGOM sea scallops targeted by the fishery (102+ mm or 4+ in shell height) was approximately 
164.19 MT (90% confidence interval from 74.35 to 278.91), an increase from 115.40 MT (66.05 
to 173.31) in 2009. These estimates are based on density estimates from the survey assuming a 
capture efficiency of 43.6%.  The previous survey in 2009 noted a large year class of 10-50 mm 
scallops on Platts Bank; this year class was still evident in 2012 and had grown to approximately 
65-90 mm.  

Based on these biomass estimates the exploitation rate in weight (landings/stock biomass, 
assuming harvested scallops greater than 102 mm shell height and a dredge efficiency of 43.6%) 
during 2012 was 2.1% with a 90% confidence interval from 1.3% to 4.7%. 

Several analyses were performed to determine how representative the survey was of the 
NGOM to determine applicability of survey results to management of the NGOM.  The fraction 
of the NGOM covered by the survey area is 0.11, however using information regarding habitat 
preferences of scallops, the fraction of the suitable habitat area for the stock within the NGOM 
covered by the survey is 0.37.  The survey extent was designed to ensure coverage of the primary 
fishing areas, and the fraction of fishing locations within the survey bounds was greater than 
50% since 2006 and greater than 70% since 2011.  Thus, the survey probably encompasses most 
of the areas with scallop concentrations high enough to support fishing activity indicating that 
survey results should be useful information for management of the NGOM scallop stock. 

 
Introduction 

The Gulf of Maine scallop fishery that occurs in federal waters is managed by the New 
England Fishery Management Council.  Amendment 11 to the New England Fishery 
Management Council Sea Scallop Fishery Management Plan (NEFMC 2008) created a separate 
limited entry program for general category fishing in the Northern Gulf of Maine management 
area (NGOM; Fig. 1).  The area is managed under an annual total allowable catch (TAC; 
currently 31.75 MT) and a daily possession limit of 90.7 kg (NEFMC 2008).  Scallop dredge 
ring size must be greater than 102 mm, but there are currently no regulations regarding shell size 
(as in Maine state waters) or meat count. 

Landings in the NGOM are low relative to the rest of the scallop stock, averaging just 
over 7 MT from 2008 to 2013 (total sea scallop landings have been over 20,000 MT in recent 
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years).  In 2013 the most landings since the management area’s inception in 2008 (over 18 MT) 
were reported, more than double any other year. 

The region has limited fishery-independent data available.  There was an offshore survey 
administered by the Maine Department of Marine Resources in 1974 (Spencer 1974), and in 
1983 and 1984 NMFS sampled some areas in this region on their annual survey (Serchuk 1983; 
Serchuk and Wigley 1984), but no broad-scale surveys were completed between the early 1980s 
and 2008 when the region was first managed under a TAC.  Given the lack of recent fishery-
independent data, the initial allowable catch was determined using historical federal Gulf of 
Maine landings (NEFMC 2008).  More recently, Maine Department of Marine 
Resources/University of Maine scallop surveys in 2009 and 2012, along with UMass Dartmouth 
video scallop surveys that occasionally sample in this area (e.g., Stokesbury et al. 2010) have 
offered fishery-independent sources of information to aid in generating the TAC. 

The only management area-wide biomass estimate previously available was based on the 
Maine Department of Marine Resources/University of Maine scallop survey in 2009.  This was a 
point estimate that used swept area to expand the survey results to a subset of the NGOM (this 
subset is discussed below; Fig. 1).  This analysis estimated 103 MT of scallops greater than 102 
mm shell height, with a confidence interval that ranged from 53 to 186 MT (Truesdell et al. 
2010).  This estimate was revised (see Results/Discussion section) during the current analysis 
and the new estimate for 2009 is 115.40 MT (90% confidence interval from 66.05 to 173.31).  
The best estimate based on the 2012 survey results indicates that the biomass of NGOM sea 
scallops over 102 mm shell height was approximately 164.19 MT of meats with a 90% 
confidence interval ranging from 74.35 to 278.91 MT. 

 
Methods 
Survey area identification and delineation 

The NGOM management area is bounded by Cape Ann, Massachusetts in the west and 
the Canadian border in the east (Fig. 1).  Prior to 2009 when the first survey was conducted, the 
NGOM had limited fishery dependent and no recent fishery-independent data available to help 
design the survey.  Scallops are not found uniformly throughout this region so sampling efforts 
were focused on a subset of areas in the NGOM.  To determine this subset, fishing locations 
from National Marine Fisheries Service vessel trip reports (VTRs) from 2000 to 2008 were 
reviewed as well as three historical surveys of the region from the 1970s and 1980s (Spencer 
1974; Serchuk 1983; Serchuk and Wigley 1984).  In addition to the information available, two 
fishermen with a history of scalloping in the Gulf of Maine were interviewed to help identify 
current and historical fishing grounds.  These sources of information were used qualitatively to 
determine the five sampling areas: Machias-Seal Island (MSI), Mount Desert Rock (MDR), 
Platts Bank (PB), Northeast of Cape Ann (NCA) and Northern Stellwagen Bank (NSB; Fig. 1). 
 To increase sampling precision, the two western strata off the Massachusetts coast (where 
most fishing occurs), NCA and NSB, were further divided into substrata of expected high, 
medium and low scallop density. 
Survey coverage area 
 Although the survey is intended to represent the NGOM scallop management area, the 
entirety of the NGOM was not sampled (Fig. 1); as such it is necessary to document the survey 
coverage area relative to total stock area, total stock biomass and the area fished.  This was 
accomplished most simply by calculating the ratio of the sampling area (ܣௌ௎ோ௏ா௒) to the area of 
the NGOM (ܣேீைெ) 
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ܴ஻஺ௌா ൌ
ௌ௎ோ௏ா௒ܣ
ேீைெܣ

 Eqn. 1 

where ܴ஻஺ௌா is the proportion of survey coverage.  This baseline ratio is only one approach to 
estimating the coverage area of the survey, and it assumes that scallops are as likely to be found 
within the survey area as they are outside.  However, the survey was designed specifically to 
sample the areas where scallops are distributed within the NGOM, so ܴ஻஺ௌா is likely to be an 
underestimate of the survey’s coverage of the scallop stock.  Two additional methods were used 
to arrive at a more realistic approximation: one based on the depths at which scallops are 
typically found and another based on fishing effort data. 

Sea scallops are typically more abundant at shallower depths (Merrill 1972; Posgay 1979; 
Serchuk et al. 1979); a depth threshold was employed as one way to estimate the effective coverage proportion of 
the survey.  Serchuk et al. (1979) note that most commercial quantities of scallops are found in depths less than 100 
m; this is corroborated by analyses of the NMFS bottom trawl survey from 1982 to 2010 and the NMFS bottom 
trawl survey from 2010 to 2012. 

Employing a depth threshold ݄ܶܦ to determine an effective coverage proportion for the 
survey can be 

ܴ஽்௛ ൌ
ௌ௎ோ௏ா௒ܣ
∗

஽்௛ܣ
 Eqn. 2 

where ܴ஽்௛ stands for the ratio at a particular depth threshold (100 m in this analysis), ܣௌ௎ோ௏ா௒
∗  

is the survey area shallower than the threshold and ܣ஽்௛is the area of the NGOM shallower than 
the depth threshold. 
 Alternatively, an effective coverage proportion can be estimated using fishing effort data.  
This assumes that the Gulf of Maine scallop fleet follows an ideal free distribution (Fretwell and 
Lucas 1969; i.e., fishing activity is directly related to abundance).  Vessel monitoring system 
(VMS) data from 2006 to 2013 were used to determine the effort-based effective coverage 
proportion ܴ௏ெௌ as  

ܴ௏ெௌ ൌ
ௌܲ௎ோ௏ா௒

ேܲீைெ
 Eqn. 3 

where ܴ௏ெௌ is the coverage proportion with respect to VMS observations (satellite location 
records), ௌܲ௎ோ௏ா௒ is the number of VMS observations within the survey areas and ேܲீைெ is the 
total number of VMS observations within the NGOM. 
 Two resolutions of VMS data were considered: 1km and 3km.  The advantage to the finer 
resolution is that the locations were more accurate, which is important near the boundaries of the 
areas.  The disadvantage is that for confidentiality reasons less VMS data was available at higher 
resolutions.  At the 1 km resolution 83% of VMS observations were available and at 3 km 
resolution 91% were available. 
Survey design 
 Surveys were carried out in June and July of 2009 and in May and June of 2012.  Dredge 
tow stations were selected from a grid overlying each stratum.  The dimensions of each grid unit 
were 1 km2.  Each survey followed a two-stage random stratified design in the NCA and NSB 
strata.  Station allocation in the first stage was based on fishing intensity from 2000-2008 vessel 
trip report (VTR) data and the size of each substratum.  Forty stations in each stratum were 
assigned to the first stage and distributed among substrata according to the formula 

௦ܰ ൌ 40 ∗
ሺܯ ௦ܸሻܣ௦

∑ ሺܯ ௦ܸሻܣ௦
ௌ
௦ୀଵ

 Eqn. 4 
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where Ns (rounded) is the number of stations to be sampled in substratum ܯ ,ݏሺሻ is the median 
function, ௦ܸ is the VTR landings from 2000 to 2008 for substratum ݏ and ܣ௦ is the area of 
substratum ݏ.  VTR data is assumed to be a proxy for scallop density and so was used to help 
allocate survey sample size.  Such commercial data have also been used in the design of 
Canadian scallop surveys (Robert and Jamieson 1986; Serchuk and Wigley 1986).  Area size was 
included in the weighting to ensure sufficient effort in the larger substrata. 

In the NCA and NSB strata, which were further divided into substrata, a two-stage survey 
was employed.  The approach taken by Francis (1984) was used to allocate tows to the second 
survey stage.  His formula to assign one additional station among strata is: 

௦ᇱܩ ൌ
௦ܯ௦ଶܣ

ଶ

݊௦ሺ݊௦ ൅ 1ሻ
 Eqn. 5 

where ܩ௦ᇱ is the assumed reduction in variance from adding a single station to a particular 
substratum ܣ ,ݏ௦ is the area, ܯ௦ is the mean catch rate (when squared, a proxy for the variance 
suggested by Francis (1984)) and ݊௦ is the number of additional stations.  Twenty stations were 
available for the second stage and were apportioned among the substrata.  They were assigned 
one-by-one (by repeated use of Eqn. 5) according to whichever substratum would gain the most 
in terms of reduced variance from receiving one additional station.  As such, the assignment of 
the ݆ th station can be written 

௦ᇱܩ ൌ
௦ܯ௦ଶܣ

ଶ

ሺ݊௦ ൅ ݆ െ 1ሻሺ݊௦ ൅ ݆ሻ
 Eqn. 6 

A single stage design was used for the remaining three strata in the eastern GOM. 
 In 2012 206 stations were sampled using a 2.13 m New Bedford style dredge with 51 mm 
rings, 4.4 cm head bale, 8.9 cm twine top, 25.4 cm pressure plate and rock chains.  This gear was 
identical to that used in the 2009 survey.  The target tow duration in 2009 was 7 minutes at a 
speed of 6.5km/h (a distance of approximately 750m).  This was reduced to 5 minutes and about 
540m in 2012, though fixed gear in some locations forced shorter tows. 
Data Analyses 
 Historically, meat count by shell height has been found to vary regionally within the Gulf of 
Maine (Serchuk and Rak 1983), so separate models predicting meat weight using shell height 
were employed for each stratum.  Depth was included because it has been shown to influence 
many aspects of scallop life history (Naidu and Robert 2006) and has been used in this type of 
analysis by Hennen and Hart (2012).  These models also included a random effect (as in Hennen 
and Hart 2012) to account for repeated sampling within a station.  The mixed effects models 
were produced using R (v. 2.15.1, R Core Team 2012) with the package lme4 (Bates et al. 2013).  
The form of the model within each stratum was 

ln൫ ௜ܹ,௧൯ ൌ βଵln൫ܪ௜,௧൯ ൅ βଶܦ௧ ൅ ܴ௧ ൅  ௜,௧ Eqn. 7ߝ

where ௜ܹ,௧ is the meat weight of individual ݅ at station ܪ ,ݐ௜,௧ is its respective shell height, ܦ௧ is 
the depth, ܴ௧ is a random effect term associated with each station, βଵ and βଶ, are the coefficients 
of the explanatory variables, and ߝ௜,௧ is the error term for each sample.  Depth was important to 
include as a covariate because although meat weights were sampled whenever possible, the 
samples were not always evenly distributed throughout the depth range of a stratum, though the 
results were extrapolated across all depths.  PB had a low number of meat weight samples in 
2009 so the 2009 samples were combined with those from 2012 for the 2009 PB meat weight 
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model. 
Prior to analyzing length frequency distributions, the number of scallops in each 5 mm 

size class belonging to a particular station was standardized to the mean swept area per station in 
the relevant stratum or substratum according to the formula: 

ܼ௟,௦,௖ ൌ
ܴ௟,௦
തܴ௦

௟ܰ,௦,௖ Eqn. 8 

where ܼ௟,௦,௖ is the standardized count for scallops at station ݈ within stratum (or substratum for 
strata 4 and 5) ݏ in 5 mm size class ܿ, ܴ௟,௦ is the swept area of the station tow, തܴ௦ is the mean 
swept area for samples in area ݏ, and ௟ܰ,௦,௖ is the number of scallops of size class ܿ in tow ݈ of 
area ݏ.  In these analyses the middle of the size bin was always used as the reference size for 
estimation. 

The mean number of scallops within each stratum was estimated and uncertainty was 
addressed using bootstrapping and percentile confidence limits.  Survey sample counts were 
bootstrapped 50,000 times.  Bootstrapping was chosen to estimate confidence bounds because it 
requires few distributional assumptions (Efron and Tibshirani 1986) and avoids unrealistic 
confidence bounds that drop outside the range of observation (such as below zero). 

To estimate the biomass and confidence limits for each stratum, the predicted meat 
weights from the mixed effects models at each location (1 km2) within each stratum were 
estimated by size class and combined with the (sub)stratum length frequency distribution and the 
number of scallops per station to calculate the overall biomass per stratum such that 

௦ܤ ൌ ෍෍ ௦ܹ,௖,௚ ௦ܲ,௖ ௦ܰ

஼

௖ୀଵ

ீ

௚ୀଵ

 
Eqn. 

9 

where ܤ௦ is the estimated biomass in stratum ܩ ,ݏ is the number of 1 km2 grids in stratum ݏ, ܿ is 
the number of 5 mm size classes over 102 mm (4 in; assumed to be harvestable size), ܹ is the 
expected weight per scallop from Eqn. 7, ௦ܲ,௖ is the proportion of scallops in stratum ݏ within 
size class ܿ, and ܰ is the bootstrapped standardized mean count per station in stratum ݏ.  The 
upper and lower confidence limits were estimated by substituting the upper and lower percentile 
estimates for N in each substratum. 

The dredge efficiency (vulnerability coefficient) used in this study was 43.6% which was 
estimated experimentally in Maine state waters (Kelly 2007).  The Maine value was used 
because it was generated near the survey area and is close to other estimates of dredge efficiency 
(e.g., Gedamke et al. 2004). 
 Weight-based exploitation rates for the NGOM were estimated for 2009 and 2012 as 

ܧ ൌ
ܮ
ܤ

 Eqn. 10 

where ܧ is the exploitation rate, ܮ is the landings in weight and ܤ is the total estimated biomass 
in the NGOM of scallops larger than 102 mm shell height.  A 90% confidence interval for the 
exploitation rate was computed using the 5th and 95th percentiles for biomass, derived from the 
bootstrapping.  Landings were assumed to be error-free. 
 
Results and Discussion 
Survey coverage area 
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 The Northern Gulf of Maine management area encompasses a region of 23,470 km2.  
Although this entire management area is under the regulations outlined in Amendment 11 to the 
sea scallop Fishery Management Plan (NEFMC 2008), scallops are not found throughout the 
region.  The survey region (Fig. 1) has an area of 2,652 km2 and the ratio of this region to the 
total area in the Northern Gulf of Maine regulatory region is 0.11 (Eqn. 1).  While this areal 
coverage appears low, the effective survey coverage is larger in terms of both potential scallop 
habitat with respect to depth as well as the realized fishery area according to vessel monitoring 
system data. 
 The coverage proportion assuming a depth threshold of 100 m (Eqn. 2) is 0.37 (Fig. 2).  This 
represents an estimate of the survey’s coverage of the NGOM stock area, assuming depth is 
related to the probability of scallop occurrence.  Using VMS data to determine the fraction of the 
fishery that occurs within the survey extent, the effective coverage proportion (Eqn. 3) was 
greater than 0.9 using either low or high resolution VMS data (Table 1).  The proportion of total 
VMS observations by year (with no data excluded for confidentiality) was calculated by Burton 
Shank (NMFS NEFSC) for 2006-2013.  Since 2009, the first year of the survey, the minimum 
coverage proportion was 0.69 (in 2010) and in 2013, the most recent year available, it was 0.87 
(Table 2). 
Scallop demographics within the NGOM 
 The most heavily fished area within the NGOM is the southwestern part, within survey areas 
NCA and NSB.  In the NCA area, most scallops were found north of Cape Ann near the state 
waters boundary in both 2009 and 2012 (Fig. 3A).  In the NSB area there were some scallops at 
the northern boundary (especially in 2012) and in both years scallops were found on the northern 
part of Stellwagen Bank near the southern-central part of the NSB area (Fig. 3A).  Both NCA 
and NSB had wide, multimodal shell height distributions in both years (Figs. 4A-B).  NSB was 
noteworthy in 2012 because it had signs of recent recruitment as well as some of the largest 
scallops seen on the survey. 

In both years scallops were found on the southwest part of PB (Fig. 3B).  The growth of 
the cohort first observed in 2009 was evident (Fig. 4C); the mode shell height grew from 32.5 
mm in 2009 to 72.5 mm in 2012.  In both years there was a small proportion of scallops that 
were between 125 and 150 mm.  The survey in MDR encountered almost no scallops in both 
years (Fig. 3C).  There were scallops to the south of this area near Mount Desert Rock in both 
years, but this small region is within Maine state waters and not part of the NGOM.  The scallops 
that were caught in 2009 were mainly less than 100 mm (Fig. 4D).  In 2012 only a single scallop 
was caught in this area.  In the MSI area there was no obvious coherence between the spatial 
distribution of catch in the 2009 and 2012 surveys; scallops within this area appear from these 
surveys to be fairly evenly distributed relative to the patchiness observed in NCA and NSB to the 
south (Fig. 3D).  The only persistent aggregation was near Machias Seal Island, again within 
state waters.  Little signs of recruitment were seen in this region in either 2009 or 2012 and most 
scallops were between 110 and 150 mm (Fig. 4E). 
 The relationship between shell height and meat weight varied by area, as in 2009 (Fig. 5).  
The best condition meats were in NSB and NCA, while the meats in MSI were clearly smaller 
for their size.  Few samples of larger scallops were taken on PB, but those greater than 100 mm 
were of similarly poor condition to the scallops sampled in MSI. 
Biomass and exploitation rate estimates 

Analysis of the surveys produced estimates indicating that the NGOM had overall 
harvestable biomass in 2009 and 2012 of 115.40 MT (90% confidence interval from 66.05 to 
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173.31) and 164.19 MT (74.35 to 278.91), respectively.  The 2009 estimate was revised slightly 
since 2010 because of the new meat weight estimates for Platts Bank, a slightly different 
approach to the bootstrapping (previously a bootstrapping with replacement method was used 
along with bias corrected confidence intervals; see Truesdell et al. 2010), and the correction of 
an error that was found in the standardization of length frequencies.  The original estimate given 
was 103 (53 to 186) MT (Truesdell et al. 2010).  In addition, the assumed dredge efficiency in 
2009 was 40%, but this was changed to 43.6%, which is based on a dredge efficiency study by 
the Maine Department of Marine Resources. 

Harvestable biomass was distributed disproportionally across the areas surveyed.  In the 
eastern half of the NGOM, the MSI area was found to have consistently high biomass (Fig. 6), 
though the density of biomass was lower than in some regions of the western NGOM (Fig. 7).  
Further west and offshore, PB was estimated to contain 5.6 harvestable MT in 2009 and 2.1 MT 
in 2012.  However, this assumes that none of the large year class on PB is yet available to fishing 
since these scallops are under the assumed harvestable size of 102 mm used in this study (Fig. 
4C).  Given the increased activity on Platts Bank evident in VMS data however, it is likely that 
some fishermen are targeting this year class though its biomass is not included in the calculations 
presented here.  Still further west in the two strata where most of the fishing currently occurs, 
NCA and NSB, the mean biomass available for harvest was 17.0 and 43.55 MT in 2009 and 55.6 
and 67.2 MT in 2012.  Despite their relatively small areas (Fig. 1), the high expected density 
strata within these regions supported considerable biomass of harvestable scallops in both survey 
years relative to the other areas surveyed (Fig. 6). 

These biomass estimates are dependent on some fixed parameters.  Survey dredge 
efficiency was assumed to be 43.6%, which was determined experimentally in Maine waters.  No 
uncertainty is attached to this estimate however.  Gadamke et al. (2004) estimated the efficiency 
of a dredge with 89 mm rings to be 42.7%, with a potential range based on sensitivity analyses 
from 35.5 to 52.5%.  The gear was different (this study used 51 mm rings), but the mean estimate 
was similar to the Maine study.  The approximate sensitivity range from Gedamke et al.’s study 
was used as a sensitivity range for the 2012 biomass estimates presented here.  If dredge 
efficiency is assumed to be 35% the 2012 estimate is 207.51 MT (with a 90% confidence interval 
ranging from 93.35 to 353.29; Table 3).  If dredge efficiency is 50% the estimate is 143.14 MT 
(65.00 to 242.88).  No uncertainty was considered for the shell height to meat weight 
relationships or the length frequency distributions.  These sources of uncertainty should be 
considered in subsequent analyses, though they are probably better estimated than sampling 
variability which is likely the main source of uncertainty and was quantified by bootstrapping. 

Landings were low from 2008 to 2012, though increased notably in 2013 (Fig. 8).  To 
determine the source of this change it would be necessary to examine vessel trip report data; 
however that information is not currently available to the authors.  One possible reason for the 
higher landings, is the increased fishing effort on PB as the year class first observed in 2009 may 
have become targeted by the fishery. 

The estimated exploitation rate during 2012 was 2.14% (90% confidence interval from 
1.26% to 4.72%; Table 3), which is lower than the 6.1% (4.1% to 10.7%) estimated during 2009.  
The reduced exploitation rate was a function of both a decrease in landings (Figure 8) and the 
increase in estimated biomass from 115.40 MT in 2009 to 164.16 MT in 2012. 
Characterization of scallops in the Gulf of Maine 

The Maine Department of Marine Resources mid-1970s survey report (Spencer 1974) 
noted that most scallops encountered were older and there was no evidence of recent recruitment, 
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leading Spencer to conclude that “only in widely separated years do scallops set in these offshore 
waters.”  The report stated that only near-shore fishing was tenable at present, though it was 
noted that in the 1960s the beds around Jeffereys Ledge were commercially viable.  In the early 
1980s scallop sets were recorded in the GOM: Serchuk (1984) and Serchuk and Wigley (1984) 
reported large quantities of small scallops offshore on Fippennies Ledge and Jeffereys Ledge.  
High densities of commercial size scallops, however, were not found in either of these surveys 
(Serchuk and Wigley 1984).  The Maine Department of Marine Resources/University of Maine 
2009 survey identified a large set of scallops on Platts Bank.  Another 2009 Gulf of Maine 
survey corroborated these findings and also observed small scallops on Fippennies Ledge, 
Jeffreys Ledge and Cashes Ledge (Stokesbury et al. 2010).  No such recruitment event was seen 
in the Maine Department of Marine Resources/University of Maine 2012 survey however. 

While the fishery-independent data are not extensive for this region, it is clear that 
scallop sets in the NGOM are intermittent.  In most years recruitment is limited or non-existent, 
but occasionally large recruitment events do occur.  This is supported by the history of the 
commercial fishery in the region, which is highly variable (Dow 1971; Kelly 2012).  The 
exception may be the western NGOM, in particular the NSB and NCA areas.  It is evident from 
the length frequency distributions (Figs. 4A-B) that recruitment is more stable in this region than 
to the east where not all size classes are evident.  This discrepancy may indicate environmental 
differences between the eastern and western NGOM, in particular how local oceanography 
interacts with the early life history of scallops. 

 
Conclusions 
 Scallops in the NGOM represent a small but locally important fishery.  Landings have been 
low since the inception of the NGOM management area, though they more than doubled in 2013.  
The best estimates from 2009 and 2012 indicate that scallop biomass increased by about 40% 
over that period.  The exploitation rate in weight (landings/stock harvestable biomass) during 
2009 was 6.1% with a 90% confidence interval from 4.1% to 10.7%, and during 2012 was 2.1% 
(1.3% to 4.7%).  Given the region’s low biomass relative to the rest of the stock along with its 
intermittent recruitment in eastern areas, it is probably not necessary to survey the NGOM every 
year.  However, periodic surveys that provide point biomass estimates are likely to be helpful to 
managers for determining a TAC. 
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Table 1: Survey coverage proportion calculated using three methods (See Eqns. 1-3).  Num. 
stands for numerator, den. stands for denominator and prop. stands for proportion. 

Type Num. descriptor Num. value Den. descriptor Den. value Prop. inside 

Area Total survey area (km2) 2,652 NGOM 23,470 0.11 

Depth thresh. Survey area < 100m 2,652 NGOM < 100m 7,132 0.37 

VMS – low res. VMS inside survey area 26,661 
Total VMS within 
NGOM 

27,217 0.98 

VMS – high res. VMS inside survey area 21,901 
Total VMS within 
NGOM 

23,555 0.93 

 
Table 2: Proportion of VMS observations within the NGOM survey area.  All VMS observations were included (i.e., 
none were excluded for confidentiality).  Table provided by Burton Shank (NMFS NEFSC). 

Year Proportion inside 

2006 0.94 

2007 0.94 

2008 0.55 

2009 0.84 

2010 0.69 

2011 0.74 

2012 0.81 

2013 0.87 

Overall 0.86 

 
Table 3: Best estimates for 2012 NGOM harvestable biomass (HB) and corresponding exploitation rates (ER) under 
three assumptions of dredge efficiency. 

Assumed Dredge 
Efficiency 

5th percentile Mean 95th percentile 
HB ER % HB ER % HB ER % 

35% 93.35 3.76 207.51 1.69 353.29 0.99 
43.6% 74.35 4.72 164.19 2.14 278.91 1.26 
50% 65.00 5.40 143.14 2.45 242.88 1.44 
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Figure 1: The NGOM and the 5 strata selected for the survey, with substrata of differing 
expected scallop density appearing in the western areas inset.  MSI: Machias-Seal Island; MDR: 
Mount Desert Rock; PB: Platts Bank; NCA: Northeast of Cape Ann; NSB: Northern Stellwagen 
Bank. 
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Figure 2: Survey area (pink) relative to the NGOM shallower than 100 m (Dth; blue).  The 
survey area accounts for 37% of the NGOM shallower than 100 m. 
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Figure 3: Distribution of survey scallop catch (all sizes) in 2009 (left panels) and 2012 (right 
panels).  A: NCA and NSB; B: PB; C: MDR; and D: MSI. 
  

A 
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Figure 4: Shell height distribution in mm for each of the areas in 2009 and 2012.  A: NCA; B: 
NSB; C: PB; D: MDR; E: MSI. 
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Figure 5: Relationship between shell height and meat weight in 2012 for the survey areas 
(excluding MDR). 

 
Figure 6: 2009 and 2012 harvestable biomass in NGOM survey strata (and substrata in the 
western region).  H, M and L indicate expected high, medium and low density substrata. 
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Figure 7: 2009 and 2012 harvestable density (in biomass per km2) in NGOM survey strata (and 
substrata in the western region).  H, M and L indicate expected high, medium and low density 
substrata. 
 

 
Figure 8: Landings history for the NGOM management area since its inception in 2008.  Dashed 
line is the 31.75 MT quota.
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Appendix B8. Relationships between chlorophyll and scallop recruitment potentially useful 
for stock projections and assessment modeling 
 
Kevin Friedland (NEFSC, Narragansett, RI), Deborah Hart and Burton Shank (NEFSC, Woods 
Hole, MA) 
 
Summary 
 
 Preliminary analyses of remote sensing and scallop dredge data suggest that recruitment to 
the yearling stage is influenced by summer phytoplankton bloom activity. Blooms in areas likely 
to influence Middle Atlantic spawning aggregations occur just prior to spring and summer 
spawning periods with larger bloom levels associated with high yearling settlement. The results 
of this analysis are encouraging and indicate further work developing techniques for predicting 
regional recruitment patterns based on chlorophyll concentrations is warranted.  Such predictions 
are at spatial scales of interest to managers (e.g. rotational management areas) and might be used 
to improve management and profitability of the fishery. 
 
Introduction 
 

This appendix describes an analysis of spring and summer bloom activity and scallop 
recruitment in the Middle Atlantic Bight during 1998 to 2012.  The topic is important because 
uncertainty about recent and near-term scallop recruitment reduces the accuracy of stock 
projection analyses use to set harvest levels and to open rotational fishing areas. Recruitment of 
scallops in the region was represented by two indices based on survey data: i) a yearling index 
based on the abundance of 1-year old scallops, and ii) a 2-year old index. The two indices 
generally agree but there are notable disagreements for some year classes, indicating potential 
measurement errors in the survey data and/or variable survival between age-1 and 2. For the 
purpose of this summary, we will concentrate on the results of modeling recruitment to the 
yearling stage.  

There the two spawning periods for Middle Atlantic Bight scallops.  Spring spawning 
occurs mostly during May and fall spawning occurs in September. In line with these putative 
spawning periods, the spring and summer bloom dynamics of the Middle Atlantic Bight were 
characterized using chlorophyll a concentrations based on remote sensing data.  The distribution 
of blooms was evaluated over a 0.5°spatial grid.  Chlorophyll a concentrations were based on 
remote-sensing measurements made with the Sea-viewing Wide Field of View (SeaWiFS) and 
Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The level-3 processed data, 
at 9 km and 8-day spatial and temporal resolutions, respectively, were obtained from the from 
the Ocean Color website (oceancolor.gsfc.nasa.gov). These two sensors provide an overlapping 
time series of chlorophyll a concentrations during the period 1998 to 2013. An analysis restricted 
to the overlapping period of data from both sensors revealed a systemic and consistent difference 
(relative bias) between them. We corrected for this bias with simple correction factors applied to 
MODIS data to approximate the mean levels of the SeaWiFS data. Chlorophyll a concentrations 
(mg m-3) were calculated by taking the average of the constituent pixel elements for each spatial-
temporal cell.  

The sequential averaging algorithm called STARS or “sequential t-test analysis of regime 
shifts” (Rodionov, 2004, 2006) was used to find the beginning and end of blooms (change 
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points) in the chlorophyll time series.  A detected bloom could not exceed nine sample periods 
(approximately 2.4 months) based on analyses of climatological bloom patterns. Periods 
bracketed by positive and negative change points exceeding nine 8-day periods were considered 
to be ecologically different from discrete blooms. This method has been used in previous 
analyses of Northeast Shelf bloom patterns (Friedland et al., 2008, 2009) and elsewhere 
(Friedland and Todd, 2012).  

We extracted statistics to characterize timing and magnitude of each bloom. Bloom start 
was defined as the day of initiation, which was the first day of the 8-day bloom period that 
exhibited bloom conditions. Bloom magnitude was the integral of the chlorophyll concentrations 
during the bloom period. In some years and locations, no distinct bloom period was detected by 
the STARS algorithm; when this occurred, bloom magnitude was taken as the integral of 
chlorophyll concentrations during the climatological (long-term average) bloom period based on 
average start and end dates for years with blooms. 
 
Results 
 

Yearling scallop recruitment appears to be related to spring and summer phytoplankton 
blooms in the Middle Atlantic Bight. The area of highest correlation between spring chlorophyll 
concentrations and yearling recruitment was on the continental shelf off Long Island (Fig. 1a). In 
contrast, the area of the greatest correlative density between summer chlorophyll concentrations 
and yearling recruitment was off the New Jersey coast (Fig. 1b). Mean seasonal surface currents 
suggest that these blooms contributed to both water column chlorophyll and depositional 
particulate organic carbon in the areas of spawning scallops. These observations are consistent 
with the hypotheses that blooms either stimulate scallop spawning or support larval survival.  
Recruitment to age two was not related to the same spring and summer bloom patterns as 
yearling scallops due primarily to the change in population size of the 2011 year class between 
year-1 and 2. 

 
Future research 
 
 Refine models that predict scallop recruitment based on chlorophyll and predator data to 
improve estimates from stock assessment and projection models. Investigate statistical 
approaches to refine yearling recruitment indices. Develop complimentary models of bloom 
driven settlement and spatio-temporal predation pressure to ultimately stimulate recruitment of 
scallops to the fishery.  
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a)      b) 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Correlation between climatological spring (a) and summer (b) bloom magnitude and the yearling scallop 
recruitment index during 1998-2012. Asterisks mark grid locations with significant correlations marked by small 
(p=0.1) and large (p=0.05) asterisks.  
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Appendix B9.  Technical documentation for the CASA length structured stock assessment 
model used in the SARC-59 sea scallop stock assessment.   
 
Larry Jacobson, Northeast Fisheries Science Center, Woods Hole, MA. 
 
[This technical description is current through CASA version nc246.] 
    
The stock assessment model described here is based on Sullivan et al.’s (1990) CASA model.5  
CASA is entirely length-based with population dynamic calculations in terms of the number of 
individuals in each length group during each year.  Age is almost completely irrelevant in model 
calculations.  Unlike many other length-based stock assessment approaches, CASA is a dynamic, 
non-equilibrium model based on a forward simulation approach.  CASA incorporates a very 
wide range of data with parameter estimation based on maximum likelihood.  CASA can 
incorporate prior information about parameters such as survey catchability and natural mortality 
in a quasi-Bayesian fashion and MCMC evaluations are practical.  The implementation described 
here was programmed in AD-Model Builder (Otter Research Ltd.).6  
 
 
Population dynamics 
 
 Time steps in the model are years, which are also used to tabulate catch and other data.  
Recruitment occurs at the beginning of each time step.  All instantaneous rates in model 
calculations are annual (y-1).  The number of years in the model ny is flexible and can be changed 
easily (e.g. for retrospective analyses) by making a single change to the input data file.  
Millimeters are used to measure body size (e.g. sea scallop shell heights).  Length-weight 
relationships should generally convert millimeters to grams.  Model input data include a scalar 
that is used to convert the units for length-weight parameters (e.g. grams) to the units of the 
biomass estimates and landings data (e.g. mt).  The units for catch and biomass are usually 
metric tons.  
 The definition of length groups (or length “bins”) is a key element in the CASA model and 
length-structured stock assessment modeling in general.  Length bins are identified in CASA 
output by their lower bound and internally by their ordinal number.  Calculations requiring 
information about length (e.g. length-weight) use the mid-length j of each bin.  The user 

specifies the first length (Lmin) and the size of length bins (Lbin).    Based on these specifications, 
the model determines the number of length bins to be used in modeling as

 binL LLLn )(int1 min  , where L is maximum asymptotic size supplied by the user, and 

int[x] is the integer part of x.   The last length bin in the model is always a “plus-group” 
containing individuals L and larger.  Specifications for length data used in tuning the model are 
separate (see below).   

      
 

                                                           
5 Original programming in AD-Model Builder by G. Scott Boomer and Patrick J. Sullivan (Cornell University), who 
bear no responsibility for errors in the current implementation. 
6 AD-Model Builder can be used to calculate variances for any estimated or calculated quantity in a stock 
assessment model, based on the Hessian matrix with “exact” derivatives and the delta method. 
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Growth 
In population dynamics calculations, individuals in each size group grow (or not) at the 

beginning of the year, based on the annual growth transition matrix P0(b,a) which measures the 
probability that a survivor in size bin a at the beginning of the previous year will grow to bin b at 
the beginning of the current year (columns index initial size and rows index subsequent size).7  
Growth probabilities do not include any adjustments for mortality and are applied to surviving 
scallops based on their original size in the preceding year. 

There are two options for growth transition matrices.  Under Option 1, a single annual 
growth matrix is calculated internally based on raw shell increment data: 

    
 




Ln

aj

ajn

abn
abP

|

|
,0  

where n(b|a) is the number of individuals that started at size a and grew to size b after one year 
in the raw size increment data.   

Under option 2, the user specifies the number of transition matrices to be supplied in the 
input file and then assigns one of the matrices to each year in the model.  All such growth 
matrices must have the same number of length groups.  The number and size groups in the model 
and in the growth matrices should be large enough to accommodate the largest maximum size in 
any year.  If growth varies such that maximum size in some time period is lower the maximum 
value, then the growth transition probabilities for that period of maximum size are set to one 
along the diagonal.  For example, if there were five length groups in the model: [20,25), [25,30), 
[30,35), [35,40) and [40,45+] mm SH and the maximum size was 34 mm SH in period one and 
44 mm SH in period two, the growth transition matrices might look like:  
	

Growth matrix for period 1 Growth matrix for period 2 
Starting size Starting size 

 
[20,
25) 

[25, 
30) 

[30, 
35) 

[35, 
40) 

[40, 
45)  

[20,
25) 

[25, 
30) 

[30, 
35) 

[35, 
40) 

[40, 
45) 

E
nd

in
g 

si
ze

 

[20,2
5) 

0.7 0 0 0 0 

E
nd

in
g 

si
ze

 

[20,2
5) 

0.7 0 0 0 0 

[25, 
30) 

0.2 0.7 0 0 0 
[25, 
30) 

0.2 0.7 0 0 0 

[30, 
35) 

0.1 0.3 1 0 0 
[30, 
35) 

0.1 0.2 0.7 0 0 

[35, 
40) 

0 0 0 1 0 
[35, 
40) 

0 0.1 0.2 0.7 0 

[40, 
45) 

0 0 0 0 1 
[40, 
45) 

0 0 0.1 0.3 1 

 
 

 
Abundance, recruitment and mortality 
 Population abundance in each length bin during the first year of the model is: 

                                                           
7  For clarity in bookkeeping, mortality and annual growth calculations are always based on the size on January 1. 
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  LL NN ,11,1   

where L is the size bin, and L,1  is the initial population length composition expressed as 

proportions so that 1
1




Ln

L
L .  eN 1  is total abundance at the beginning of the first modeled 

year and  is an estimable parameter.  It is not necessary to estimate recruitment in the first year 
because recruitment is implicit in the product of N1 and L.  The current implementation of 
CASA takes the initial population length composition as data supplied by the user, typically 
based on survey size composition data and a preliminary estimate of survey size-selectivity. 
 Abundance at length in years after the first is calculated: 

    101   yyyy RSNPN





 

where yN


is a vector (length nL) of abundance in each length bin during year y, P0 is the matrix 

(nL x nL) of annual growth probabilities P0(b,a), yS


is a vector of length- specific survival 

fractions for year y,   is the operator for an element-wise product , and yR


 is a vector holding 

length-specific abundance of new recruits at the beginning of year y.   
Survival fractions are: 

   LyLyLyLy IFMZ
Ly eeS ,,,,

,
    

where Zy,L is the total instantaneous mortality rate and My,L is the instantaneous rate for natural 
mortality (see below).  Length-specific fishing mortality rates are Fy,L= Fy sy,L where sy,L is the 
size-specific selectivity8 for fishing in year y (scaled to a maximum of one at fully recruited size 
groups), Fy is the fishing mortality rate on fully selected individuals.   Fully recruited fishing 

mortality rates are yeFy
 where  is an estimable parameter for the log of the geometric 

mean of fishing mortality in all years, and y is an estimable “dev” parameter.9  The 
instantaneous rate for “incidental” mortality (Iy,L) accounts for mortality due to contact with the 
fishing gear that does not result in any catch on deck (see below).10  The degree of variability in 
dev parameters for fishing mortality, natural mortality and for other variables can be controlled 
by specifying variances or likelihood weights ≠ 1, as described below.  

Natural mortality rates are calculated: 

gpeuM yLLLy
y   

,  

 where u


holds length-specific adjustments to the natural mortality rate for each length group 
(input by the user and assumed constant over time),  is an estimable parameter measuring the 
mean log natural mortality rate during all years and y is an estimable year-specific dev 
parameter.  The r.h.s. deals with density-dependent natural mortality which may be important in 
the population dynamics of small scallops after large recruitment events.  In particular, pL is a 

                                                           
8  In this context, “selectivity” describes the combined effects of all factors that affect length composition of catch 
or landings.  These factors include gear selectivity, spatial overlap of the fishery and population, size-specific 
targeting, size-specific discard, etc.   
9 Dev parameters are a special data type for estimable parameters in AD-Model Builder.  Each set of dev parameters 
(e.g. for all recruitments in the model) is constrained to sum to zero.  Because of the constraint, the sums  +y 
involving ny+1 terms amount to only ny parameters. 
10 .  See the section on per recruit modeling below for formulas used to relate catch, landings and indicental 
mortality. 
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descending logistic function based on size (larger size groups experience less density dependent 
mortality), y is abundance of sea scallops used to calculate density dependent natural mortality, 
g=e� is a multiplier that converts from units of abundance to units of instantaneous mortality, 
and � is a an estimable scaling parameter.  The logisitic function is used to calculate the 
abundance that controls maximum density dependent mortality while reduceing the importance 
of large individuals:  

߰௬ ൌ෍݌௅ ௬ܰ,௅

௟

 

Where Ny,L is on January 1.   
The logistic function in density dependent mortality calculations is calculated: 

௅݌ ൌ 1 െ
1

1 ൅ ݁ି௕ሺ௅ି௔ሻ
 

were b is the slope parameter and a is the L50 parameter.    The logistic curve is flat or decreasing 
with size because b=e� is > 0 where � is an estimable parameter.  The L50 parameter is 
parameterized so that it automatically falls between the first and last sizes in the model: 

ܽ ൌ ௠௜௡ܮ ൅ ሺܮ௠௔௫ െ ௠௜௡ሻܮ ∗
݁ఈ

1 ൅ ݁ఈ
 

where Lmin is the size at the bottom of the first size bin in the population model, Lmax is the top of 
the last size bin, and � is an estimable parameter. 

Incidental mortality iuFI LyLy ,  is the product of fully recruited fishing mortality (Fy, a 

proxy for effective fishing effort, although nominal fishing effort might be a better predictor of 
incidental mortality), relative incidental mortality at length (uL) and a scaling parameter i, both of 
which are supplied by the user and not estimable in the model.  Incidental mortality at length is 
supplied by the user as a vector (u


) containing a value for each length group in the model.  The 

model rescales the relative mortality vector so that the mean of the series is one.   
Given abundance in each length group, natural mortality, and fishing mortality, predicted 

fishery catch-at-length in numbers is: 

  
 

Ly

yL
Z

Ly
Ly Z

NeF
C

Ly

,

,,
,

,1 
  

Total catch number during each year is 



Ln

j
Lyy CC

1
, .   Catch data (in weight, numbers or as 

length composition data) are understood to include landings (Ly) and discards (dy) but to exclude 
losses to incidental mortality (i.e. Cy=Ly+dy).  
 Discard data are supplied by the user in the form of discarded biomass in each year or a 
discard rate for each year (or a combination of biomass levels and rates).  In the current model, 
discards have the same selectivity as landed catch and size composition data for discards are not 
included in the input file.11  It is important to remember that discard rates in CASA are defined 
the ratio of discards to landings (d/L).  The user may also specify a mortal discard fraction 
between zero and one if some discards survive.  If the discard fraction is less than one, then the 
discarded biomass and discard rates in the model are reduced correspondingly.  See the section 
on per recruit modeling below for formulas used to relate catch, landings and incidental 
mortality. 
                                                           
11 The model will be modified in future to model discards and landing separately, and to use size composition data 
for discards. 
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Recruitment (the sum of new recruits in all length bins) at the beginning of each year 
after the first is calculated: 

  yeRy   

where  is an estimable parameter that measures the geometric mean recruitment and the y are 
estimable dev parameters that measure inter-annual variability in recruitment.  As with natural 
mortality devs, the user specified variance or likelihood weight ≠ 1 can be used to help estimate 
recruitment deviations (see below). 

Proportions of recruits in each length group are calculated based on a beta distribution 
B(w,r) over the first nr length bins that is constrained to be concave down.12  Proportions of new 
recruits in each size group are the same from year to year.  Beta distribution coefficients must be 
larger than one for the shape of the distribution to be unimodal.  Therefore, w=1+e and r=1+e, 
where  and  are estimable parameters.  It is presumably better to calculate the parameters in 
this manner than as bounded parameters because there is likely to be less distortion of the 
Hessian for w and r values close to one and parameter estimation is likely to be more efficient.   
 Surplus production during each year of the model can be computed approximately from 
biomass and catch estimates (Jacobson et al., 2002): 
  tttt CBBP  1  

In future versions of the CASA model, surplus production will be more calculated more 
accurately by projecting the population at the beginning of the year forward one year assuming 
only natural mortality. 
 
Weight at length13 
 The assumed body weight for size bins except the last is calculated using user-specified 
length-weight parameters and the middle of the size group.  Different length-weight parameters 
are used for the population and for the commercial fishery.  Mean body weight in the last size 
bin is read from the input file and can vary from year to year.  Typically, mean weight in the last 
size bin for the population would be computed based on survey length composition data for large 
individuals and the population length –weight relationship.  Mean weight in the last size bin for 
the fishery would be computed in the same manner based on fishery size composition data.   

In principle, these calculations could be carried out in the model itself because all of the 
required information is available.  In practice, it seems better to do the calculations externally 
and supply them to the model as inputs because of decisions that typically have to be made about 
smoothing the estimates and years with missing data. 
 
Population summary variables 

Total abundance at the beginning of the year is the sum of abundance at length Ny,L at the 
beginning of the year.  Average annual abundance for a particular length group is: 

                                                           
12 Standard beta distributions used to describe recruit size distributions and in priors are often constrained to be 

unimodal in the CASA model.  Beta distributions B(w,r) with mean rww  and variance 

    122  rwrwwr are unimodal when w > 1 and r >1.  See 

http://en.wikipedia.org/wiki/Beta_distribution for more information. 
13 Model input data include a scalar that is used to convert the units for length-weight parameters (e.g. grams) to the 
units of the biomass estimates and landings data (e.g. mt). 
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The current implementation of the assessment model assumes different weight-at-length 
relationships for the stock and the fishery.  Average stock biomass is computed using the 
population weight at length information.  

Total stock biomass is: 

 



Ln

L
LLyy wNB

1
,  

where Lw is weight at length for the population on January 1.  Total catch weight is: 

  



Ln

L
LLyy wCW

1
,  

where Lw is weight at length in the fishery.   
Fy estimates for two years are comparable only when the fishery selectivity in the model 

was the same in both years.  A simpler exploitation index is calculated for use when fishery 
selectivity changes over time: 

  





Ln

xj
Ly

y
y

N

C
U

,

 

where x is a user-specified length bin (usually at or below the first bin that is fully selected 
during all fishery selectivity periods).  Uy exploitation indices from years with different 
selectivity patterns may be relatively comparable if x is chosen carefully. 
 Spawner abundance in each year is (Ty) is computed: 

L

n

L

Z
Lyy geNT

L
y




1

,


 

Where 0    1 is the fraction of the year elapsed before spawning occurs (supplied by the user).  
Maturity at length (gL) is from an ascending logistic curve: 

bLaL e
g 


1

1
 

with parameters a and b supplied by the user.  Spawner biomass is computed using the 
population length-weight vaoues. 
 Egg production (Sy) in each year is computed: 

  LL

n

L

Z
Lyy xgeNS

L
y




1

,


 

where: 
  v

L cLx   
Where the fecundity parameters (c and v) for fecundity are supplied by the user.  Fecundity 
parameters per se include no adjustments for maturity or survival.  They should represent 
reproductive output for a spawner of given size. 
 
Fishery and survey selectivity  

The current implementation of CASA includes six options for calculating fishery and 
survey selectivity patterns.  Fishery selectivity may differ among “fishery periods” defined by 



 

764 
59th SAW Assessment Report                           B. Sea Scallops-Appendix B9 

the user. Selectivity patterns that depend on length are calculated using lengths at the mid-point 
of each bin ( ).  After initial calculations (described below), selectivity curves are rescaled to a 
maximum value of one. 

Option 1 is a flat with sL=1 for all length bins.  Option 2 is an ascending logistic curve: 

  YY BAy e
s 


1

1
,  

Option 3 is an ascending logistic curve with a minimum asymptotic minimum size for small size 
bins on the left. 

  yyBAy DD
e

s
YY










  1
1

1
,   

Option 4 is a descending logistic curve: 

   YY BAy e
s 


1

1
1,  

 
Option 5 is a descending logistic curve with a minimum asymptotic minimum size for large size 
bins on the right: 

    yyBAy DD
e

s
YY










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1
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Option 6 is a double logistic curve used to represent “domed-shape” selectivity patterns with 
highest selectivity on intermediate size groups: 
   

  








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






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The coefficients for selectivity curves AY, BY, DY and GY carry subscripts for time because they 
may vary between fishery selectivity periods defined by the user.  All options are parameterized 
so that the coefficients AY, BY, DY and GY are positive.  Under options 3 and 5, Dy is a proportion 
that must lie between 0 and 1.   

Depending on the option, estimable selectivity parameters may include , ,  and .  For 
options 2, 4 and 6, YeAY

 , YeBY
 , YeDY

 and YeGY
 .  Options 3 and 5 use the same 

conventions for AY and BY, however, the coefficient DY is a proportion estimated as a logit-
transformed parameter (i.e. Y=ln[DY /(1-Dy)]) so that: 

 
Y

Y

e

e
DY 






1
 

The user can choose, independently of all other parameters, to either estimate each fishery 
selectivity parameter or to keep it at its initial value.  Under Option 2, for example, the user can 
estimate the intercept Y, while keep the slope Y at its initial value. 
 
Per recruit recruit modeling 

The per recruit model in CASA uses the same population model as in other model 
calculations under conditions identical to the last year in the model.  It is a standard length-based 
approach except that discard and incidental mortality are accommodated in all calculations.  In 
per recruit calculations, fishing mortality rates and associated yield estimates are understood to 
include landings and discard mortality, but to exclude incidental mortality.  Thus, landings per 
recruit L are: 
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 
1

C
L  

where C is total catch (yield) per recruit and  is the ratio of discards D to landings in the last 
year of the model.  Discards per recruit are calculated: 

LD   
Losses due to incidental mortality (G) are calculated: 

 

IK
Z

BeI
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




1
 

where uFI  is the incidental mortality rate, u is a user-specified multiplier (see above) and B is 

stock biomass per recruit.  Note that C=FK so that K=C/F.  Then, 

  

uCG
F

FuC
G




 

The model will estimate a wide variety (F%SBR, Fmax and F0.1) of per recruit model 
reference points as parameters.  For example, 

jeF SBR
%  

where F%SBR is the fishing mortality reference point that provides a user specified percentage of 
maximum SBR.  j is the model parameter for the jth reference point. 
 A complete per recruit output table is generated in all model runs that can be used for 
evaluating the shape of YPR and SBR curves, including the existence of particular reference 
points. 
 Per recruit reference points are time consuming to estimate and it is usually better to 
estimate them after other more important population dynamics parameters are estimated.  Phase 
of estimation can be controlled individually for %SBR, FMAX and F0.1 so that per recruit 
calculations can be delayed as long as possible.  If the phase is set to zero or a negative integer, 
then the reference point will not be estimated.  As described below, estimation of Fmax always 
entails an additional phase of estimation.  For example, if the phase specified for Fmax is 2, then 
the parameter will be estimated initially in phase 2 and finalized the last phase (phase >= 3).  
This is done so that the estimate from phase 2 can be used as an initial value in a slightly 
different goodness of fit calculation during the latter phase.  
 Per recruit reference points should have no effect on other model estimates.  Residuals 
(calculated – target) for %SBR, F0.1 and Fmax reference points should always be very close to 
zero.  Problems may arise, however, if reference points (particularly Fmax) fall on the upper 
bound for fishing mortality.  In such cases, the model will warn the user and advise that the 
offending reference points should not be estimated.  It is good practice to run CASA with 
reference point calculations turned on and then off to see if biomass and fishing mortality 
estimates change. 
    The user specifies the number of estimates required and the target %SBR level for each.  For 
example, the target levels for four %SBR reference points might be 0.2, 0.3, 0.4 and 0.5 to 
estimate F20%, F30%, F40% and F50%.  The user has the option of estimating Fmax and/or F0.1 as 
model parameters also but it is not necessary to supply target values. 
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Tuning and goodness of fit 
 
 There are two steps in calculating the negative log likelihood (NLL) used to measure how 
well the model fits each type of data.  The first step is to calculate the predicted values for data.  
The second step is to calculate the NLL of the data given the predicted value.  The overall 
goodness of fit measure for the model is the weighted sum of NLL values for each type of data 
and each constraint: 
   jj L  

where j is a weighting factor for data set j (usually j=1, see below), and Lj is the NLL for the 
data set.  The NLL for a particular data is itself is usually a weighted sum: 

  



jn

i
ijijj LL

1
,,  

where nj is the number of observations, j,i is an observation-specific weight (usually j,i =1, see 
below), and Lj,i is the NLL for a single observation. 

Maximum likelihood approaches reduce the need to specify ad-hoc weighting factors ( 
and ) for data sets or single observations, because weights can often be taken from the data (e.g. 
using CVs routinely calculated for bottom trawl survey abundance indices) or estimated 
internally along with other parameters.  In addition, robust maximum likelihood approaches (see 
below) may be preferable to simply down-weighting an observation or data set.  However, 
despite subjectivity and theoretical arguments against use of ad-hoc weights, it is often useful in 
practical work to manipulate weighting factors, if only for sensitivity analysis or to turn an 
observation off entirely.  Observation specific weighting factors are available for most types of 
data in the CASA model.    
 
Missing data 
 Availability of data is an important consideration in deciding how to structure a stock 
assessment model.  The possibility of obtaining reliable estimates will depend on the availability 
of sufficient data.  However, NLL calculations and the general structure of the CASA model are 
such that missing data can usually be accommodated automatically.  With the exception of catch 
data (which must be supplied for each year, even if catch was zero), the model calculates that 
NLL for each datum that is available.  No NLL calculations are made for data that are not 
available and missing data do not generally hinder model calculations. 
 
Likelihood kernels 

Log likelihood calculations in the current implementation of the CASA model use log 
likelihood “kernels” or “concentrated likelihoods” that omit constants.  The constants can be 
omitted because they do not affect slope of the NLL surface, final point estimates for parameters 
or asymptotic variance estimates.   For data with normally distributed measurement errors, the 
complete NLL for one observation is: 

     
2

5.02lnln 





 




 ux
L  

The constant  2ln  can always be omitted.  If the standard deviation is known or assumed 

known, then ln() can be omitted as well because it is a constant that does not affect derivatives.  
In such cases, the concentrated NLL is:   
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If there are N observations with possible different variances (known or assumed known) and 
possibly different expected values: 
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If the standard deviation for a normally distributed quantity is not known and is estimated 
(implicitly or explicitly) by the model, then one of two equivalent calculations is used.  Both 
approaches assume that all observations have the same variance and standard deviation.  The 
first approach is used when all observations have the same weight in the NLL: 
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The second approach is equivalent but used when the weights for each observation (wi) may 
differ:  
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In the latter case, the maximum likelihood estimator: 
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(where x̂ is the average or predicted value from the model) is used explicitly for  .  The 
maximum likelihood estimator is biased by N/(N-df) where df is degrees of freedom for the 
model.  The bias may be significant for small sample sizes, which are common in stock 
assessment modeling, but df is usually unknown. 
 If data x have lognormal measurement errors, then ln(x) is normal and L is calculated as 
above.  In some cases it is necessary to correct for bias in converting arithmetic scale means to 

log scale means (and vice-versa) because 2
2 

 ex  where =ln(x).  It is often convenient to 
convert arithmetic scale CVs for lognormal variables to log scale standard deviations using

 21ln CV .  

 For data with multinomial measurement errors, the likelihood kernel is: 

   
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i
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ln   

where n is the known or assumed number of observations (the “effective” sample size), pi is the 
proportion of observations in bin i, and i is the model’s estimate of the probability of an 
observation in the bin.  For surveys, i is adjusted for mortality up to the date of the survey and 
for growth up to the mid-point of the month in which the survey occurs.  For fisheries, i 
accommodates all of the mortality during the current year and is adjusted for growth during 
January 1 to mid-July.   The constant K is used for convenience to make L easier to interpret.  It 
measures the lowest value of L that could be achieved if the data fit matched the model’s 
expectations exactly: 
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 For data x that have measurement errors with expected values of zero from a gamma 
distribution: 

      lnln1 




 xxL      

where >0 and >0 are gamma distribution parameters in the model.  For data that lie between 
zero and one with measurement errors from a beta distribution: 
         xqxpL  1ln1ln1  
 where p>0 and q>0 are parameters in the model.  

In CASA model calculations, distributions are usually described in terms of the mean and 
CV.  Normal, gamma and beta distribution parameters can be calculated mean and CV by the 
method of moments.14  Means, CV’s and distributional parameters may, depending on the 
situation, be estimated in the model or specified by the user.   

The NLL for a datum x from gamma distribution is: 

        


lnlnln*1 kk
x

xkL   

where k is the shape parameter and  is the scale parameter.  The last two terms on the right are 
constants and can be omitted if k and  are not estimated.  Under these circumstances,   

   

x

xkL  ln*1  

 
Robust methods 
 Goodness of fit for survey data may be calculated using a “robust” maximum likelihood 
method instead of the standard method that assumes lognormal measurement errors.  The robust 
method may be useful when survey data are noisy or include outliers.   

Robust likelihood calculations in CASA assume that measurement errors are from a 
Student’s t distribution with user-specified degrees of freedom df.  Degrees of freedom are 
specified independently for each observation so that robust calculations can be carried out for as 
many (or as few) cases as required.  The t distribution is similar to the normal distribution for df 
30.  As df is reduced, the tails of the t distribution become fatter so that outliers have higher 
probability and less effect on model estimates.  If df =0, then measurement errors are assumed in 
the model to be normally distributed.   

The first step in robust NLL calculations is to standardize the measurement error residual 
  xxt   based on the mean and standard deviation.   Then: 

                                                           

14 Parameters for standard beta distributions B(w,r) with mean rww  and variance 

    122  rwrwwr  are calculated from user-specified means and variances by the method of 

moments.  In particular,   11 2  w  and     111 2  r .  Not all combinations of  

and 2 are feasible.  In general, a beta distribution exists for combinations of  and 2 if 0 <  < 1 and 0 < 2 < (1-
).  Thus, for a user-specified mean  between zero and one, the largest feasible variance is 2 < (1-).  These 
conditions are used in the model to check user-specified values for  and 2. See 
http://en.wikipedia.org/wiki/Beta_distribution for more information. 
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Catch weight data 
 Catch data (landings plus discards) are assumed to have normally distributed measurement 
errors with a user specified CV.  The standard deviation for catch weight in a particular year is 

yY Ĉ  where “^” indicates that the variable is a model estimate and errors in catch are 

assumed to be normally distributed.  The standardized residual used in computing NLL for a 

single catch observation and in making residual plots is   YYYY CCr ˆ . 
 
Specification of landings, discards, catch  
 Landings, discard and catch data are in units of weight and are for a single or “composite” 
fishery in the current version of the CASA model.  The estimated fishery selectivity is assumed 
to apply to the discards so that, in effect, the length composition of catch, landings and discards 
are the same.   

Discards are from external estimates (dt) supplied by the user. If dt   0, then the data are 
used as the ratio of discard to landed catch so that: 

ttt LD   

where t =Dt/Lt is the ratio of discard and landings (a.k.a. d/K ratios) for each year.  If dt < 0 

then the data are treated as discard in units of weight: 
 .tt dabsD   

In either case, total catch is the sum of discards and landed catch (Ct = Lt + Dt).  It is possible to 
use discards in weight dt < 0 for some years and discard as proportions dt > 0 for other years in 
the same model run.   

If catches are estimated (see below) so that the estimated catch tĈ  does not necessarily 

equal observed landings plus discard, then estimated landings are computed: 

 
t

t
t

C
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
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ˆ  

Estimated discards are:  

.ˆˆ
ttt LD   

Note that ttt DLC ˆˆˆ  as would be expected. 

 
Fishery length composition data 
 Data describing numbers or relative numbers of individuals at length in catch data (fishery 
catch-at-length) are modeled as multinomial proportions cy,L: 
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The NLL for the observed proportions in each year is computed based on the kernel for the 
multinomial distribution, the model’s estimate of proportional catch-at-length  Yĉ  and an 
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estimate of effective sample size Y
C N  supplied by the user.  Care is required in specifying 

effective sample sizes, because catch-at-length data typically carry substantially less information 
than would be expected based on the number of individuals measured.  Typical conventions 
make Y

cN  200 (Fournier and Archibald, 1982) or set Y
C N equal to the number of trips or tows 

sampled (Pennington et al., 2002).  Effective sample sizes are sometimes chosen based on 
goodness of fits in preliminary model runs (Methot, 2000; Butler et al., 2003).   
 Standardized residuals are not used in computing NLL fishery length composition data.  
However, approximate standardized residuals   LyLyLyy ccr ,,, ˆ  with standard deviations

  y
c

LyLyLy Ncc ,,, ˆ1ˆ  based on the theoretical variance for proportions are computed for use 

in making residual plots. 
 
Survey index data 
 In CASA model calculations, “survey indices” are data from any source that reflect relative 
proportional changes in an underlying population state variable.  In the current version, surveys 
may measure stock abundance at a particular point in time (e.g. when a survey was carried out), 
stock biomass at a particular point in time, or numbers of animals that dies of natural mortality 
during a user-specified period.  For example, the first option is useful for bottom trawl surveys 
that record numbers of individuals, the second option is useful for bottom trawl surveys that 
record total weight, and the third option is useful for survey data that track trends in numbers of 
animals that died due to natural mortality (e.g. survey data for sea scallop “clappers”).  Survey 
data that measure trends in numbers dead due to natural mortality can be useful in modeling time 
trends in natural mortality.  In principle, the model will estimate model natural mortality and 
other parameters so that predicted numbers dead and the index data match in either relative or 
absolute terms.  

In the current implementation of the CASA model, survey indices are assumed to be 
linear indices of abundance or biomass so that changes in the index (apart from measurement 
error) are assumed due to proportional changes in the population.  Nonlinear commercial catch 
rate data are handled separately (see below).  Survey index and fishery length composition data 
are handled separately from trend data (see below).  Survey data may or may not have 
corresponding length composition information. 

In general, survey index data give one number that summarizes some aspect of the 
population over a wide range of length bins.  Selectivity parameters measure the relative 
contribution of each length bin to the index.  Options and procedures for estimating survey 
selectivity patterns are the same as for fishery selectivity patterns, but survey selectivity patterns 
are not allowed to change over time. 
 NLL calculations for survey indices use predicted values calculated: 

  ykkyk AqI ,,
ˆ   

where qk is a scaling factor for survey index k, and Ak,y is stock available to the survey.  The 
scaling factor is computed using the maximum likelihood estimator: 
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where Nv and ߪ௞,௝
ଶ  is the log scale variance corresponding to the assumed CV for the survey 

observation.15    
Available stock for surveys measuring trends in abundance or biomass is calculated: 
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where sk,L is size-specific selectivity of the survey, k,y=Jk,y/365, Jk,y is the Julian date of the 

survey in year y, and ykyZe ,
is a correction for mortality prior to the survey.  Available biomass 

is calculated in the same way except that body weights wL are included in the product on the 
right hand side.  
 Available stock for indices that track numbers dead by natural mortality is: 
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where LyN , is average abundance during the user-specified period of availability and LyM ,

~  is the 

instantaneous rate of natural mortality for the period of availability.  Average abundance during 
the period of availability is: 
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where  Z
LyLy eNN ,,

~
is abundance at elapsed time of year =k,y-k, vk=jk /365, and jk is the 

user-specified duration in days for the period of availability.  The instantaneous rates for total 

 kykLyLy ZZ   ,,,

~
 and natural  kykLyLy MM   ,,,

~
 mortality are also adjusted to 

correspond to the period of availability.  In using this approach, the user should be aware that the 
length based selectivity estimated by the model for the dead animal survey (sk,L) is conditional on 
the assumed pattern of length-specific natural mortality (u


) which was specified as data in the 

input file. 
NLL calculations for survey index data assume that log scale measurement errors are 

either normally distributed (default approach) or from a t distribution (robust estimation 
approach).  In either case, log scale measurement errors are assumed to have mean zero and log 
scale standard errors either estimated internally by the model or calculated from the arithmetic 
CVs supplied with the survey data.   

                                                           

15 Scaling factors in previous versions were calculated seqs
 where s is an estimable and survey-specific 

parameter.  However, prior distributions were shown to have a strong effect on the parameters such that the 
relationship N=qA did not hold.  The approach in the current model avoids this problem. 
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The standardized residual used in computing NLL for one survey index observation is 

  ykykykyk IIr ,,,, /ˆln   where Ik,y is the observation.  The standard deviations yk , will vary 

among surveys and years if CVs are used to specify the variance of measurement errors.  
Otherwise a single standard deviation is estimated internally for the survey as a whole.    
 
Survey length composition data 

Length bins for fishery and survey length composition data are flexible and the flexibility 
affects goodness of fit calculations in ways that may be important to consider in some 
applications.  The user specifies the starting size (bottom of first bin) and number of bins used 
for each type of fishery and survey length composition.  The input data for each length 
composition record identifies the first/last length bins to be used and whether they are plus 
groups that should include all smaller/larger length groups in the data and population model 
when calculating goodness of fit.  Goodness of fit calculations are carried out over the range of 
lengths specified by the user.  Thus length data in the input file may contain large or small size 
bins that are ignored in goodness of fit calculations.    As described above, the starting size and 
bin size for the population model are specified separately. In the ideal and simplest case, the 
minimum size and same length bins are used for the population and for all length data.  
However, as described below, length specifications in data and the population model may differ.   

For example, the implicit definitions of plus groups in the model and data may differ.  If 
the first bin used for length data is a plus group, then the first bin will contain the sum of length 
data from the corresponding and smaller bins of the original length composition record.  
However, the first bin in the population model is never a plus group.  Thus, predicted values for 
a plus group will contain the sum of the corresponding and smaller bins in the population.  The 
observed and predicted values will not be perfectly comparable if the starting sizes for the data 
and population model differ.  Similarly, if the last bin in the length data is a plus group, it will 
contain original length composition data for the corresponding and all larger bins.  Predicted 
values for a plus group in the population will be the sum for the corresponding bin and all larger 
size groups in the population, implicitly including sizes > L..  The two definitions of the plus 
group will differ and goodness of fit calculation may be impaired if the original length 
composition data does not include all of the large individuals in samples. 

In the current version of the CASA model, the size of length composition bins must be ≥ 
Lbin in the population model (this constraint will be removed in later versions).  Ideally, the size 
of data length bins is the same or a multiple of the size of length bins in the population.  
However, this is not required and the model will prorate the predicted population composition 
for each bin into adjacent data bins when calculating goodness of fit.  With a 30-34 mm 
population bin and 22-31and 32-41 mm population bins, for example, the predicted proportion in 
the population bin would be prorated so that 2/5 was assigned to the first data bin and 3/5 was 
assigned to the second data bin.  This proration approach is problematic when it is used to 
prorate the plus group in the population model into two data bins because it assumes that 
abundance is uniform over lengths within the population group.  The distribution of lengths in a 
real population might be far from uniform between the assumed upper and lower bounds of the 
plus group. 

The first bin in each length composition data record must be ≥ Lmin which is the smallest 
size group in the population model.  If the last data bin is a plus group, then the lower bound of 
the last data bin must be ≤ the upper bound of the last population bin.  Otherwise, if the last data 
bin is not a plus group, the upper bound of the last data bin must be ≤ the upper bound of the 
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population bin. 
NLL calculations for survey length composition data are similar to calculations for 

fishery length composition data.  Surveys index data may measure trends in stock abundance or 
biomass but survey length composition data are always for numbers (not weight) of individuals 
in each length group.  Survey length composition data represent a sample from the true stock 
which is modified by survey selectivity, sampling errors and, if applicable, errors in recording 
length data.  For example, with errors in length measurements, individuals belonging to length 
bin j, are mistakenly assigned to adjacent length bins j-2, j-1, j+1 or j+2 with some specified 
probability.  Well-tested methods for dealing with errors in length data can be applied if some 
information about the distribution of the errors is available (e.g. Methot 2000).   

Prior to any other calculations, observed survey length composition data are converted to 
multinomial proportions: 
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where nk,y,j is an original datum and ik,y,L is the corresponding proportion.  As described above, 
the user specifies the first first

ykL , and last last
ykL , length groups to be used in calculating goodness of fit 

for each length composition and specifies whether the largest and smallest groups should be 
treated as “plus” groups that contain all smaller or larger individuals. 

Using notation for goodness of fit survey index data (see above), predicted length 
compositions for surveys that track abundance or biomass are calculated: 
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Predicted length compositions for surveys that track numbers of individuals killed by natural 
mortality are calculated: 

  


 Last
yk

first
yk

L

LL
LyLyLk

LyLyLk
yk

NMs

NMs
A

,

,

,,,

,,,
,

~

~

 

 
Considering the possibility of structured measurement errors, the expected length composition 

ykA ,'


for survey catches is: 

  kykyk EAA ,,'


  

where kE is an error matrix that simulates errors in collecting length data by mapping true length 

bins in the model to observed length bins in the data.   
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The error matrix kE  has nL rows (one for each true length bin) and nL columns (one for 

each possible observed length bin).  For example, row k and column j of the error matrix gives 
the conditional probability P(k|j) of being assigned to bin k, given that an individual actually 
belongs to bin j.  More generally, column j gives the probabilities that an individual actually 
belonging to length bin j will be recorded as being in length bins j-2, j-1, j, j+1, j+2 and so on.  
The columns of kE add to one to account for all possible outcomes in assigning individuals to 

observed length bins.  kE is the identity matrix if there are no structured measurement errors.   

 In CASA, the probabilities in the error matrix are computed from a normal distribution with 
mean zero and keCV  , where k is an estimable parameter.  The normal distribution is 
truncated to cover a user-specified number of observed bins (e.g. 3 bins on either side of the true 
length bin).  
 The NLL for observed proportions at length in each survey and year is computed with the 
kernel for a multinomial distribution, the model’s estimate of proportional survey catch-at-length 

 Lyki ,,
ˆ  and THE effective sample size Y

I N  supplied by the user.  Standardized residuals for 

residual plots are computed as for fishery length composition data. 
 
Effective sample size for length composition data 
 Effective sample sizes that are specified by the user are used in goodness of fit calculations 
for survey and fishery length composition data.  A post-hoc estimate of effective sample size can 
be calculated based on goodness of fit in a model run (Methot 1989).  Consider the variance of 
residuals for a single set of length composition data with N bins used in calculations.  The 
variance of the sum based on the multinomial distribution is: 
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where  is the effective sample size for the multinomial and jp is the predicted proportion in the 

jth bin from the model run.   Solve for  to get: 
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The variance of the sum of residuals can also be calculated: 
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This formula is approximate because it ignores the traditional correction for bias.  Substitute the 
third expression into the second to get: 
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which can be calculated based on model outputs.  The assumed and effective sample sizes will 
be similar in a reasonable model when the assumed sample sizes are approximately correct.  
Effective sample size calculations can be used iteratively to manually adjust input vales to 
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reasonable levels (Methot 1989). 
 
Variance constraints on dev parameters 
 Variability in dev parameters (e.g. for natural mortality, recruitment or fishing mortality) can 
be limited using variance constraints that assume the deviations are either independent or that 
they are autocorrelated and follow a random walk.  When a variance constraint for independent 

deviations is activated, the model calculates the NLL for each log scale residual 


 y , where y 

is a dev parameter and  is a log-scale standard deviation.  If the user supplies a positive value 
for the arithmetic scale CV, then the NLL is calculated assuming the variance is known.  
Otherwise, the user-supplied CV is ignored and the NLL is calculated with the standard 
deviation estimated internally.  Calculations for autocorrelated deviations are the same except 

that the residuals are 
 


 1 yy and the number of residuals is one less than the number of 

dev parameters. 
 
 
LPUE data 
 Commercial landings per unit of fishing effort (LPUE) data are modeled in the current 
implementation of the CASA model as a linear function of average biomass available to the 
fishery, and as a nonlinear function of average available abundance.  The nonlinear relationship 
with abundance is meant to reflect limitations in “shucking” capacity for sea scallops.16  Briefly, 
tows with large numbers of scallops require more time to sort and shuck and therefore reduce 
LPUE from fishing trips when abundance is high.  The effect is exaggerated when the catch is 
composed of relatively small individuals.  In other words, at any given level of stock biomass, 
LPUE is reduced as the number of individuals in the catch increases or, equivalently, as the mean 
size of individuals in the catch is reduced.   

Average available abundance in LPUE calculations is: 
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where the weights at length f
Lw are for the fishery rather than the population.  Predicted values for 

LPUE data are calculated: 
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Measurement errors in LPUE data are assumed normally distributed with standard deviations 

yyy LCV


 .  Standardized residuals are   yyyy LLr ˆ . 

 

                                                           
16 D. Hart, National Marine Fisheries Service, Northeast Fisheries Science Center, Woods Hole, MA, pers. comm. 
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Per recruit (SBR and YPR) reference points17 
 The user specifies a target %SBR value for each reference point that is estimated.  Goodness 
of fit is calculated as the sum of squared differences between the target %SBR and %SBR 
calculated based on the reference point parameter.  Except in pathological situations, it is always 
possible to estimate %SBR reference point parameters so that the target and calculated %SBR 
levels match exactly.  Reference point parameters should have no effect on other model 
estimates and the residual (calculated – target %SBR) should always be very close to zero. 
 Goodness of fit for F0.1 estimates is calculated in a manner similar to %SBR reference 
points.  Goodness of fit is calculated as the squared difference between the slope of the yield 
curve at the estimate and one-tenth of the slope at the origin.  Slopes are computed numerically 
using central differences if possible or one-sided (right hand) differences if necessary. 
 Fmax is estimated differently in preliminary and final phases.  In preliminary phases, 
goodness of fit for Fmax is calculated as (1/Y)2, where Y is yield per recruit at the current estimate 
of Fmax.  In other words, yield per recruit is maximized by finding the parameter estimate that 
minimizes it’s inverse.  This preliminary approach is very robust and will find Fmax if it exists.  
However, it involves a non-zero residual (1/Y) that interferes with calculation of variances and 
might affect other model estimates.  In final phases, goodness of fit for Fmax is calculated as (d2) 
where d is the slope of the yield per recruit curve at Fmax.  The two approaches give the same 
estimates of FMAX but the goodness of fit approach used in the final phases has a residual of zero 
(so that other model estimates are not affected) and gives more reasonable variance estimates.  
The latter goodness of fit calculation is not used during initial phases because the estimates of 
FMAX tend to “drift down” the right hand side of the yield curve in the direction of decreasing 
slope.  Thus, the goodness of fit calculation used in final phases works well only when the initial 
estimate of FMAX is very close to the best estimate. 
 Per recruit reference points should have little or no effect on other model estimates.  
Problems may arise, however, if reference points (particularly Fmax) fall on the upper bound for 
fishing mortality.  In such cases, the model will warn the user and advise that the offending 
reference points should not be estimated.  It is good practice to run CASA with and without 
reference point calculations to ensure that reference points do not affect other model estimates 
including abundance, recruitments and fishing mortality rates. 
 
Growth data 
 Growth data in CASA consist of records giving initial length, length after one year of 
growth, and number of corresponding observations.  Growth data may be used to help estimate 
growth parameters that determine the growth matrix P .  The first step is to convert the data for 
each starting length to proportions: 
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where n(b,a) is the number of individuals starting at size that grew to size b after one year.  The 
NLL is computed assuming that observed proportions p(a|b) at each starting size are a sample 
from a multinomial distribution with probabilities given by the corresponding column in the 

                                                           
17 This approach is not currently estimated because of performance problems.  The user can, however, estimate per 
recruit reference point from a detailed table written in the main output file (nc.rep).  However, variances are not 
available in the table. 
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models estimated growth matrix P .  The user must specify an effective sample size j
PN based, 

for example, on the number of observations in each bin or the number of individuals contributing 
data to each bin.  Observations outside bin ranges specified by the user are ignored.  
Standardized residuals for plotting are computed based on the variance for proportions. 
 
Survey gear efficiency data 
 

Survey gear efficiency for towed trawls and dredges is the probability of capture for 
individuals anywhere in the water column or sediments along the path swept by the trawl.  
Ideally, the area surveyed and the distribution of the stock coincides so that: 
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Where Ik,y is a survey observation in units equivalent to biomass (or numerical) density (e.g. kg 
per standard tow), Bk,y is the biomass (or abundance) available to the survey, A is the area of the 
stock, ak is the area swept during one tow, 0<ek  1 is efficiency of the survey gear, and uk is a 
constant that adjusts for different units.   

Efficiency estimates from studies outside the CASA model may be used as prior 
information in CASA.  The user supplies the mean and CV for the prior estimate of efficiency, 
along with estimates of Ak, ak and uk.   At each iteration if the model, the gear efficiency implied 
by the current estimate of qk is computed.  The model then calculates the NLL of the implied 
efficiency estimate assuming it was sampled from a unimodal beta distribution with the user-
specified mean and CV. 

If efficiency estimates are used as prior information (if the likelihood weight  > 0), then 
it is very important to make sure that units and values for the survey data (I), biomass or 
abundance (B), stock area (A), area per tow (a), and adjustments for units (u) are correct (see 
Example 1).  The units for biomass are generally the same as the units for catch data.  In some 
cases, incorrect specifications will lead to implied efficiency estimates that are  0 or ≥ 1 which 
have zero probability based on a standard beta distribution used in the prior.  The program will 
terminate if e  0.  If e ≥ 1 during an iteration, then e is set to a value slightly less than one and a 
penalty is added to the objective function.  In some cases, incorrect specifications will generate a 
cryptic error that may have a substantial impact on estimates. 

Implied efficiency estimates are useful as a model diagnostic even if very little prior 
information is available because some model fits may imply unrealistic levels of implied 
efficiency.  The trick is to down weight the prior information (e.g. =1e-6) so that the implied 
efficiency estimate has very little effect on model results as long as 0 < e < 1.  Depending on the 
situation, model runs with e near a bound indicate that estimates may be implausible.  In 
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addition, it may be useful to use a beta distribution for the prior that is nearly a uniform 
distribution by specifying a prior mean of 0.5 and variance slightly less than 1/12=0.083333.  
 Care should be taken in using prior information from field studies designed to estimate 
survey gear efficiency.  Field studies usually estimate efficiency with respect to individuals on 
the same ground (e.g. by sampling the same grounds exhaustively or with two types of gear).  It 
seems reasonable to use an independent efficiency estimate and the corresponding survey index 
to estimate abundance in the area surveyed.  However, stock assessment models are usually 
applied to the entire stock, which is probably distributed over a larger area than the area covered 
by the survey.  Thus the simple abundance calculation based on efficiency and the survey index 
will be biased low for the stock as a whole.  In effect, efficiency estimates from field studies tend 
to be biased high as estimates of efficiency relative to the entire stock. 
 
Maximum fishing mortality rate 

Stock assessment models occasionally estimate absurdly high fishing mortality rates 
because abundance estimates are too small.  The NLL component used to prevent this potential 
problem is: 

   



N

t
t qdL

0

22  
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where: 

  
otherwise

FtifFt
dt 0


  

and  
 

otherwise

FtifFt
qt 0

/ln 
  

with the user-specified threshold value  set larger than the largest value of Ft that might 
possibly be expected (e.g. =3).  The weighting factor  is normally set to a large value (e.g. 
1000). 
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Appendix B10.  Forecasting methodology (SAMS model)   
Dvora Hart, Northeast Fisheries Science Center, Woods Hole, MA. 
 

The model presented here is a version of the SAMS (Scallop Area Management Simulator) 
model used to project sea scallop abundance and landings as an aid to managers since 1999. 
Subareas were chosen to coincide with current management. In particular, Georges Bank was 
divided into four open areas (two portions of the South Channel, Northern Edge and Peak, and 
Southeast Part), the three access portions of the groundfish closures, and the three no access 
portions of these areas. The Mid-Atlantic was subdivided into seven areas: Virginia Beach, the 
Delmarva, Elephant Trunk Closed Area and Hudson Canyon South Rotational Areas, New York 
Bight, Inshore New York Bight, and Long Island.  
 
Methods 
 

The model tracks population vectors p(i,t) = (p1, p2,..., pn), where pj(i,t) represents the 
density of scallops in the jth size class in area i at time t.  The model uses a difference equation 

approach, where time is partitioned into discrete time steps t1, t2,…, with a time step of length Δt 
= tk+1 - tk. The landings vector h(i,tk) represents the catch at each size class in the ith region and 
kth time step.  It is calculated as: 
 

 

where I is the identity matrix and H is a diagonal matrix whose jth diagonal entry hjj is given by: 
 

hjj = 1/(1+exp(s0 – s1*s)) 
 

where s is the shell height of the mid-point of the size-class.  
 
The landings L(i,tk) for the ith region and kth time step are calculated using the dot product 

of landings vector h(i,tk) with the vector m(i) representing the vector of meat weights at shell 
height for the ith region: 

 
L(i,tk) = Ai h(i,tk)  m(i) 

 
where ei represents the dredge efficiency in the ith region. 

 
Even in the areas not under special area management, fishing mortalities tend not to be 

spatially uniform due to the sessile nature of sea scallops (Hart 2001). Fishing mortalities in open 
areas were determined by a simple “fleet dynamics model” that estimates fishing mortalities in 
open areas based on area-specific catch rates, and so that the overall DAS or open-area F matches 
the target. Based on these ideas, the fishing mortality Fi in the ith region is modeled as: 

Fi = k*fi*Li 
 

),,())],(exp([),( kkk tiptitHItih 
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where Li is the estimated LPUE (landings per day charged) in the ith region, fi is an area-specific 
adjustment factor to take into account preferences for certain fishing grounds (due to lower costs, 
shorter steam times, ease of fishing, habitual preferences, etc.), and k is a constant adjusted so that 
the total DAS or fishing mortality meets its target. For these simulations, fi = 1 for all areas.  

 
Scallops of shell height less than a minimum size sd are assumed to be discarded, and 

suffer a discard mortality rate of d, taken here, as in the rest of the assessment to be 20%. There 
is also evidence that some scallops not actually landed may suffer mortality due to incidental 
damage from the dredge. Let FL be the landed fishing mortality rate and FI be the rate of 
incidental mortality on scallops not caught. For Georges Bank, which is a mix of sandy and hard 
bottom, we used FI = 0.2FL. For the Mid-Atlantic (almost all sand), we used FI = 0.1FL. 
Incidental mortality for a given shell height bin was then calculated using equations (4.3) and 
(4.4) of the main document.  

 
Growth in each subarea was specified by a growth transition matrix G, based on area-

specific growth increment data from 2001-2012.   Recruitment was modeled stochastically, and 
was assumed to be log-normal in each subarea. The mean, variance and covariance of the 
recruitment in a subarea was set to be equal to that observed in the historical time-series between 
1979-2013. New recruits enter the first size bin at each time step at a rate ri depending on the 
subarea i, and stochastically on the year. These simulations assume that recruitment is a 
stationary process, i.e., no stock-recruitment relationship is assumed. This may underestimate 
recruitment in the Mid-Atlantic if the recent strong recruitment there are due to a stock-recruit 
relationship. 
 

The population dynamics of the scallops in the present model can be summarized in the 
equation: 

 
where ρi is a random variable representing recruitment in the ith area. The model was run with 
10 time steps per year. The population and harvest vectors are converted into biomass by using 
the shell-height meat-weight relationship: 
 

W = exp[a + b ln(s)],  
 

where W is the meat weight of a scallop of shell  height s.  These relationships are subarea-
specific; see Appendix B3 for details. For calculating biomass, the shell height of a size class 
was taken as its midpoint.   
 

Commercial landing rates (LPUE, landed meat weight per day) were estimated using an 
empirical function based on the observed relationship between annual landing rates, expressed as 
number caught per day (NLPUE) and survey exploitable numbers per tow. At low biomass levels, 
NLPUE increases roughly linearly with survey abundance. However, at high abundance levels, the 
catch rate of the gear will exceed that which can be shucked by a seven-man crew. This is similar 
to the situation in predator/prey theory, where a predator’s consumption rate is limited by the time 
required to handle and consume its prey (Holling 1959). The original Holling Type-II predator-

),,()exp(),( 1 kik tiptHMGtip  
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prey model assumes that handling and foraging occur sequentially. It predicts that the per-capita 
predation rate R will be a function of prey abundance N according to a Monod functional response: 

,
N

N
R






 

where α and β are constants. In the scallop fishery, however, some handling (shucking) can occur 
while foraging (fishing), though at a reduced rate because the captain and one or two crew 
members need to break off shucking to steer the vessel during towing and to handle the gear during 
haulback.  
 

The fact that a considerable amount of handling can occur at the same time as foraging 
means that the functional response of a scallop vessel will saturate quicker than predicted by the 
above equation. To account for this, a modified Holling Type-II model was used, so that the 
landings (in numbers of scallops) per unit effort (DAS) L (the predation rate, i.e., NLPUE) will 
depend on scallop (prey) exploitable numbers N according to the formula: 

.
22 N

N
L







 

The parameters α and β to this model were fit to the observed fleet-wide LPUE vs. exploitable 
biomass relationship during the years 1994-2012 (previous years were not used because of the 
change from port interviews to logbook reporting). The number of scallops that can be shucked 
should be nearly independent of size provided that the scallops being shucked are smaller than 
about a 20 count. The time to shuck a large scallop will go up modestly with size. To model this, if 
the mean meat weight of the scallops caught, g, in an area is more than 20 g, the parameters α and 

β in the above equation are reduced by a factor g/20 . This means, for example, that a crew could 

shuck fewer 10 count scallops per hour than 20 count scallops in terms of numbers, but more in 
terms of weight. 
 

An estimate of the fishing mortality imposed in an area by a single DAS of fishing in that 
area can be obtained from the formula FDAS = La/Na, where La is the NLPUE in that area obtained 
as above, and Na is the exploitable abundance (expressed as absolute numbers of scallops) in that 
area.  This allows for conversion between units of DAS and fishing mortality. 

 
Initial conditions for the population vector p (i,t) were estimated using the 2013 surveys, 

with the overall estimates scaled to match the 2013 biomass as estimated by CASA. The 2013 
initial conditions were varied depending on the survey standard errors in each subarea, and scaled 
so that the initial standard error in biomass was about 15,000 mt, a figure that the working group 
considered a fair measure of the true uncertainty in the initial estimates.   
 




