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ABSTRACT: A primary factor threatening the recovery of the North Atlantic right whale is the on-
going risk of collision with large ocean-going vessels. Hence, any viable conservation strategy must
include mitigation of this risk. In particular, the critical wintering habitat off the Atlantic shores of the
southeastern United States overlaps with the shipping routes of some of the region's busiest ports. As
a first step in the process of ship strike risk mitigation for this region, we estimated the risk associated
with current patterns of shipping traffic, and compared this with estimates of risk for a set of hypo-
thetical alternative routes. As a measure of risk, we selected the co-occurrence of whales and vessels
within cells of a 4 km grid. We performed parametric estimation of whale encounter rate and associ-
ated risk within a Bayesian hierarchical model, using data from aerial surveys and the Mandatory
Ship Reporting System of the SE United States, along with a selection of environmental covariates.
Importantly, we were able to account for annual and monthly variation in encounters in our estimates.
All alternative routes provided reduced overall risk, ranging from a 27 to 44 % reduction, relative to
the estimated risk of observed traffic. The largest marginal gains in risk reduction were attained by
restricting traffic associated with the busiest port, Jacksonville, Florida, but restrictions on all ports
achieved the highest reduction. We emphasize the importance of accounting for temporal as well as

spatial variation in whale encounter rates, given the migratory behavior of the species.
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INTRODUCTION

The risk of collision with ocean-going vessels is a
continuing challenge to the recovery of the endan-
gered North Atlantic right whale Eubalaena glacialis.
Numbering perhaps fewer than 400 individuals,
important parts of the population’'s summer and winter
habitat coincide with areas of high commercial ship-
ping traffic (Ward-Geiger et al. 2005). Like most long-
lived mammals, right whale population growth is
extremely sensitive to changes in adult survival, par-
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ticularly for females. It has been suggested that avoid-
ing just a handful of adult female mortality events each
year could result in the stabilization of population
dynamics (Fujiwara & Caswell 2001). Hence, prevent-
ing collisions with ships—a primary cause of right
whale deaths (Kraus 1990, Knowlton & Kraus 2001) —
is an important part of the right whale management
plan (National Marine Fisheries Service 2005).
Mitigation of ship strike risk is a primary focus of
management for North Atlantic right whales on their
critical wintering habitat in the southeastern United
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States (SEUS), the only known calving area for the spe-
cies (Kenney et al. 2001). This can involve altering the
movement patterns of large vessel ship traffic through
and around right whale critical habitat such that the
risk of collision is minimized. One management strat-
egy is to select and enforce shipping traffic routes that
result in a relatively low overall risk of encounter with
wintering right whales for ships using these routes.
This requires some spatio-temporal, possibly dynamic,
estimates of whale—-vessel encounter probabilities over
all candidate shipping routes to major ports in the
SEUS, along with some estimate of uncertainty for
these probabilities.

It is important to establish the appropriate spatial
and temporal scales for the estimation of risk. Both
must have sufficient resolution to facilitate the estab-
lishment of shipping lanes in space and time, yet be
coarse enough to support estimates of adequate preci-
sion. Accounting for very small-scale processes (e.g.
responses of individual whales to approaching vessels)
is problematic, due to the difficulty in collecting the
appropriate behavioral data at that scale, and will
therefore be avoided. Instead, we will estimate occur-
rence and quantify risk on a grid at a spatial scale that
is suited to the precision of the available data.

This work describes a spatial, hierarchical Bayesian
risk model, employing available survey data and pre-
dictive covariates to estimate and predict occurrence.
This model, in turn, is used to quantify the relative risk
associated with candidate routes in a set of alternative
shipping lanes. In the absence of estimates of
detectability, it is impossible to estimate population
size without bias (Pollock & Kendall 1987, Thompson
2002). Instead, we predict the occurrence of right
whale sightings in time and space across the SEUS
critical habitat, based on survey data and an associated
spatial covariate model for the prediction of whale
occurrence. A key advantage of a Bayesian approach
to risk analysis is the capacity to model uncertainty in
model parameters (and hence, predictions) more real-
istically, and integrate this uncertainty into our esti-
mates of risk. Where data are sparse, parameters will
have wide probability intervals, and these will mani-
fest themselves as reduced certainty in estimates of
risk. As new data are collected, the model may be
updated in a Bayesian framework to reflect the new
information.

STUDY AREA AND DATA

Our study focused on the risk of right whale collision
with ships within the SEUS Mandatory Ship Reporting
System (MSRS, Fig. 1). This zone was established in
1999 and ranges from 30° 00’ N to 31°27' N latitude, in-
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Fig. 1. Southeast United States (SEUS) right whale critical
habitat boundary and mandatory ship reporting (MSR) zone,
subdivided into 4 km grid cells

cluding coastal waters within approximately 45 km of
the shore, bounded to the east at 80°51.6" W longitude
(Silber et al. 2002). All commercial vessels exceeding
300 gross US tons are required to report their position
to shore when entering the delineated area (Ward-
Geiger et al. 2005). This southern MSRS zone includes
most of the right whale critical habitat in the southeast
and is seasonal, operating from November 15 through
April 16, coinciding with the calving season.

Though our goal was to estimate risk of collision, we
knew relatively little about the small-scale interactions
between ships and whales, such as behavioral re-
sponses of right whales or sighting probabilities of
whales by crew. To date, there is little or no evidence
for evasive behaviors of whales in response to
approaching vessels, in part because of the difficulties
inherent in collecting data at that scale. We thus chose
to estimate risk at a relatively coarse scale, identifying
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broader areas of possible co-occurrence that may
require management. To this end, we discretized the
southeast MSRS zone into a grid composed of 4 km x
4 km cells. We believe this scale is small enough to
characterize the heterogeneity in vessel traffic inten-
sity and in habitat variables that may affect right whale
distribution, yet large enough to accrue a sufficient
number of vessel and whale observations to generate
acceptable statistical estimates. The scale is also rea-
sonable considering the precision of the reporting sys-
tem's requirements for location, which is reported to
the nearest whole minute.

Information on the distribution of right whales was
derived from aerial surveys, which were conducted
throughout the right whale calving season each year.
The surveys, flown under similar (good) conditions and
using similar aircraft, provided long-term data on right
whale distribution within federally designated critical
habitat (Fig. 1) and adjacent areas. Keller et al. (2006)
describe the distribution and intensity of the first sev-
eral years (1991 to 1998) of SEUS survey effort. Effort
varied through time, but core areas were consistently
surveyed. Annually, the greatest effort was expended
in critical habitat between Brunswick, Georgia, and
south of Jacksonville, Florida, USA. More recently, the
survey effort was modified to include the entire MSRS
zone.

Survey data consisted of total right whale group
sightings y;; and the associated mean aerial survey ‘on
watch' effort (n;, in days), summarized by 4 km grid
cell (i=1, ..., N) and survey month across all years (t =
1, ..., M; December through March). Data were avail-
able from seasons 1992 to 1993 through 2004 to 2005;
therefore, t = 1 corresponds to December 1992, while
t = M corresponds to March 2005. In addition, 2 key
environmental covariates, monthly average sea sur-
face temperature (SST) and bathymetry (mean ocean
depth), were used to develop a predictive model for
right whale occurrence. To aid in the interpretation of
parameter estimates, both bathymetric and tempera-
ture data were normalized by subtracting the grand
mean and dividing by the standard deviation of the
data.

Vessel traffic information was based on MSRS
reports during available vyears (1999-2000 to
2004-2005). Ship routes were estimated based on
reported track information provided by the MSRS
(Ward-Geiger et al. 2005). In most cases, a straight-line
path was assumed between the point-of-entry into the
zone and the pilot buoy at the entrance to the port of
call. This assumption was made in the absence of addi-
tional positional information within the MSRS zone.
Routes were summarized over the grid by counting all
paths that intersected with each grid cell for each
month of the study interval.

MODELING AND ESTIMATION

It is natural to model counts of surveyed animals as
Poisson-distributed random variables. However, pre-
liminary investigation of the right whale survey data
revealed severe lack-of-fit under the Poisson assump-
tion. Most of the observations were zeros and ones,
with very few counts greater than one. As a result,
instead of modeling the expected number of groups,
we chose to estimate the probability of encountering
one or more groups per month of survey effort. The
probability of one or more detections in a given cell i
during a given month can be expressed as the comple-
ment of the probability of no detections. In turn, the
probability of no detections during a given month is
the product of the probability of observing no groups
(v = 0) on each survey day j. Here, we assume that
these daily probabilities are approximately equal, so
this is the daily probability Pr(y; = 0) raised to the num-

ber of survey days n:
bl

n;=1-]]Pr(y; =0)=
- (1)
1-[Pr(y; =0)I"

While we assume that the probability of encounter n;
is relatively constant within each month, this assump-
tion is likely not valid over longer periods of time and
over space, due to seasonal movement by migratory
right whales. This leads us to estimate unique
encounter probabilities for each cell in each survey
month (December to March) in each year (indexed by
t). We characterize spatial variability as a function of
physical variables, SST s and bathymetry d. Hence, m;
is expressed as a hierarchical function:

logit(my) = 0 + o l(t € Y)+ Bod; + Bid? + Yosi + Visid  (2)

where 6 is a global mean, o, a year effect, 3, and f3; are
first- and second-order covariates, respectively, for
bathymetry, and 7y, and vy, are first- and second-order
covariates, respectively, for SST (second-order effects
were included to allow for maxima at intermediate val-
ues of the covariates). The indicator function I(t € Y)
returns 1 if survey month tis in year Y, and 0 other-
wise. To aid the interpretability of year effects, they
were modeled as zero-mean normal random variables
with precision (inverse variance) T o, = N(0,1). The
logit transformation was applied to constrain estimates
of encounter rate to the (0,1) interval.

The likelihood of unit encounter probabilities given
observed data was evaluated using a Bernoulli dis-
tribution, which describes the distribution of single
binary events; hence, x; = 1 with probability &, other-
wise x;; = 0. Here, the event in question is any non-zero
survey observation:



90 Endang Species Res 6: 87-94, 2008

{1 if y;>0
it =

0if y, =0 )

The relationship among model parameters is sum-
marized in Fig. 2.

ESTIMATION OF RISK

Consistent with the goals of this research, risk was
defined as the co-occurrence (in time and space) of
whales and vessels. Thus, we sought to identify routes
through cells that predict relatively few whale occur-
rences in each month of the calving season, according
to the predicted encounter rates. A reasonable risk
function, then, is the vessel track count per cell,
weighted by the probability of whale occurrence and
summed over all cells and months:

ﬁ=22ftn Vit (4)
t i

where v; is the estimated number of vessels traversing
cell i during month ¢, based on MSRS data. Thus, risk is
a monotonically increasing function of both vessel den-
sity and encounter probability, and is zero for any cells
in which either quantity is zero. An obvious and impor-
tant assumption of this measure is a direct relationship
between the encounter rates estimated from survey
data and actual encounter rates with ships. These rates
are surely not identical, but we assume that they are
directly and positively correlated.

To assess the relative risk of alternative ship traffic
patterns, we compared 5 alternative shipping routes
(Fig. 3), along with the actual MSRS traffic from sea-
sons 1999 to 2000 through 2004 to 2005, using the esti-
mated risk metric above. Each alternative routing
describes different restrictions on the paths taken by
vessels into each of the 3 major SEUS ports (Bruns-
wick, GA, Fernandina Beach, FL, and Jacksonville,
FL): Option 1 restricts Jacksonville traffic to a direct
east—west approach from the eastern edge of the MSR,

Fig. 3. Five candidate options for ship routes to the Brunswick
(GA), Fernandina (FL) and Jacksonville (FL) ports, showing
the relative volumes of traffic (no. of ships) for permissible
routes in each (on log scale), along with observed traffic from
1999 to 2000 through 2004 to 2005. Observed: actual shipping
traffic; Option 1: Jacksonville traffic restricted to east—west
approach, leaving other ports unrestricted; Option 2: adds
second southeast—northwest route to Jacksonville, in addition
to the east—west approach; Option 3: constrains Jacksonville
traffic as in Option 2 and restricts traffic to Fernandina and
Brunswick to east-west approaches; Option 4: allows for
second southeast—northwest route to both Fernandina and
Brunswick, in addition to the restrictions of Option 3; Option
5: restricts traffic to all 3 ports exclusively to their respective
east—west approaches
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Fig. 2. Hierarchical structure of the predictive model for right

whale occurrence. Shaded oval with X represents data, white

ovals represent stochastic nodes, and triangle represents

calculated nodes. SST: sea surface temperature; o: year ef-

fect; 1: precision (inverse variance) of the year effects; other
parameters defined in Table 2
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leaving approaches to the other ports unrestricted;
Option 2 allows for a second southeast—-northwest
route to Jacksonville, in addition to the east—west
approach; Option 3 constrains Jacksonville traffic as in
Option 2, but restricts traffic to Fernandina and
Brunswick to east—west approaches from the eastern
edge of the MSR; Option 4 allows for a second south-
east—northwest route to both Fernandina and Bruns-
wick, in addition to the restrictions of Option 3; and
Option 5 restricts traffic to all 3 ports exclusively to
their respective east—west approaches. For compari-
son, the observed MSRS traffic is denoted Option 0.
For each alternative, the total volume of shipping was
kept constant. Note that for some scenarios, vessel traf-
fic stops several kilometers offshore. This indicates the
presence of a Morse Code Alpha buoy, from which
ships are typically guided into port by harbor pilots
(Ward-Geiger et al. 2005).

Model parameters and expected risk were estimated
together in a hierarchical Bayesian model, using a
Markov chain Monte Carlo algorithm implemented by
the PyMC module (http://pymc.googlecode.com) for
the Python programming language (http://python. org).
In the absence of strong prior information about model
parameters, all parameters were assigned vague
prior distributions; logit-linear coefficients were given
mean-zero normal priors with low precision (high vari-
ance), T=0.001, while the precision hyperparameter for
the year effects was assigned a uniform prior over the
interval (0,100). The model was run for 50000 itera-
tions, with 20 000 discarded as a burn-in interval, leav-
ing 30000 iterations for inference. Based on inspection
of traces, convergence diagnostics and formal good-
ness-of-fit measures provided by PyMC, there was no
evidence of either lack of convergence or lack of fit.
Spatial visualization and databases were supported by
the GRASS Geographical Information System (GRASS
Development Team) and ArcGIS (ESRI).

To assess the importance of the predictor variables
described above, we fit 5 different models, each
including a different combination of parameters. Along
with the full model (all parameters included), we

Table 1. Deviance information criterion (DIC) values and as-

sociated model weights corresponding to alternative models

comprised of different combinations of predictive covariates.
SST: sea surface temperature

Model DIC ADIC  Weight
Year + SST + Bathymetry 7257 0 1.000
SST + Bathymetry 7295 38 0.000
Year + SST 7459 202 0.000
Year + Bathymetry 7620 363 0.000
Intercept only 7864 607 0.000

included an intercept-only model, one that excluded
year effects, another that excluded SST effects, and a
fifth that excluded bathymetry effects. These models
were compared using deviance information criterion
(DIC), a Bayesian information-theoretic distance mea-
sure (Spiegelhalter et al. 2002). The full model gar-
nered nearly 100% of the model weight (Table 1).
Hence, only the results from this model will be pre-
sented.

RESULTS

All alternative routes were estimated to have
reduced risk relative to the observed traffic, based on
data from 1992 to 1993 through 2004 to 2005 (Fig. 4).
There were 3 distinct groups of routes with similar esti-
mates of risk, based on clustering of their posterior
marginal distributions. The low risk group included
Options 3, 4 and 5, while the moderate risk group
included Options 1 and 2. Nominally, Option 4 had the
lowest mean cumulative risk. Option 0 (observed traf-
fic) comprised the high risk group. The lowest esti-
mated risk, offered by Option 4, incurred 56.1 % (95 %
Bayesian credible interval: 55.9, 56.4) of the risk of
the observed traffic. In contrast, the poorest alternative
route, Option 1, was estimated to have 73.3% (72.9,
73.6) the risk of the observed traffic.
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Fig. 4. Boxplots show distributions of the reduction in esti-
mated cumulative risk for 5 alternative patterns of ship traffic
relative to observed pattern over a 13-season period
(1992-1993 to 2004-2005). Centerline of each plot indicates
the median value, boxes the central 50% density, and
whiskers the 96 % Bayesian credible intervals (BCI) for each
scenario. Options include: Jacksonville eastern approach only
(Option 1); Jacksonville eastern and southeastern approaches
only (Option 2); Jacksonville eastern and southeastern
approaches, plus Brunswick and Fernandina approaches
(Option 3); all approaches (Option 4); and eastern approaches
to all ports only (Option 5)
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Table 2. Parameter estimates, variance and 95% Bayesian credible intervals
(BCI) for hierarchical model parameters. All estimates are expressed on the
logit scale, except for annual effects variance 1! and risk p; SST: sea

surface temperature

Linear and quadratic terms for both
bathymetry and SST were negative,
indicating maxima at intermediate
values of both variables.

The estimated probability of en-
Parameter Mean SD BCI2.5% BCI97.5% . . .
counter varied substantially over time
85 (global mean) ~5.050 0.077  -5.198 ~4.899 and space. Fig. 5 shows the monthly
1! (annual effects variance) 0.048 0.028 0.010 0.099 estimated mean encounter probabili-
Bo (bathymetry, linear) -0.265  0.055 -0.364 -0.149 ties 7t;, for 2 seasons, 1999 to 2000 and
Bl (bathymetry, quadratic) -0.398 0.050 -0.503 -0.309 2000 to 2001' as eXampleS of monthly
Yo (SST, linear) -1.263 0.077 -1.409 -1.110 .
T (SST, quadratic) ~0.513  0.048  -0.621 -0.428 and annual variation.
po (risk, Option 0) 451.8 18.7 415.8 488.8
p1 (risk, Option 1) 330.8 13.5 304.1 356.7
p (risk, Option 2) 323.6 13.2 297.4 349.0 DISCUSSION
p3 (risk, Option 3) 281.5 11.3 259.5 303.7
p4 (risk, Option 4) 277.4 11.4 255.3 299.7 . . .
ps (risk, Option 5) 288.8 11.6 266.6 311.8 We employed a Bayesian hierarchi-
cal model for the prediction of monthly

All posterior parameter summary statistics are com-
piled in Table 2. Covariate model parameter estimates
are expressed on the logit scale; for example, the
global intercept 6, mean of —5.050 corresponds to a
daily encounter probability of approximately 0.0064.
This is essentially a ‘baseline’ probability that excludes
year effects, and is centered at mean values of both
SST and bathymetry. Year effects were often substan-
tial, with T = 27.23 corresponding to a variance of
0.048, albeit with large standard errors. Bathymetry
and SST model parameters were relatively precise, re-
flecting the quantity of data informing these estimates.

right whale occurrence as the basis for
arisk assessment for large vessel collisions. The hierar-
chical model afforded an efficient use of spatial covari-
ate information. Specifically, information from each
cell at each time period contributed to the estimation of
parameters that described the variation in right whale
occurrence over time and space. It may be possible to
further leverage spatial information by, for example,
applying a conditional autoregressive model structure
to use observations from adjacent cells to yield more
precise estimates of right whale occurrence. In gen-
eral, we recommend hierarchical modeling for such
problems, where parameters can be expressed as
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Fig. 5. As an illustration of within- and between-year variation in encounter probability, estimated mean log-probability of
encounter log(#) by month are shown for 2 seasons, (a) 1999 to 2000 and (b) 2000 to 2001



Fonnesbeck et al.: Right whale risk estimation 93

higher-level functions of other parameters. This avoids
either having to ignore heterogeneity and pool data, or
separately estimating individual parameters that are
obviously related (Gelman et al. 2004).

Right whale occurrence rates showed obvious pat-
terns of temporal variation, both within and among
years (Fig. 5, Table 2). Monthly variance is due primar-
ily to migratory movements in and out of the critical
habitat throughout the winter (Kenney et al. 2001).
Whales are known to move into the southeastern
waters in late November and December and begin
moving back north in March, following cooler SSTs
near the Georgia and Florida coasts within the season
(Keller et al. 2006). In addition, there was considerable
annual variation in the probability of encounter, partic-
ularly with respect to the degree to which whales
inhabit the southern extent of the critical habitat dur-
ing the calving season. Some of this may be attribut-
able to temperature; for example, 2000 to 2001 was a
particularly cold year, and these colder conditions
coincided with higher encounter rates of whales in the
SE part of the critical habitat. This pattern of distribu-
tion may have increased vulnerability to ship strike by
exposing whales to the dense traffic associated with
the large Jacksonville port.

It is perhaps unsurprising that the most restrictive
routes were estimated as having the lowest risk, since
they constrain the total area of critical habitat exposed
to vessel traffic (Fig. 3). Note that the largest reduction
in risk comes from imposing travel lanes on the busiest
port, Jacksonville (Fig. 4); the distance between the
observed traffic risk and the closest alternatives
(Options 1 and 2) is entirely attributable to constrain-
ing the Jacksonville approach. A smaller, but measur-
able, reduction comes with subjecting all ports to some
defined set of lanes (Options 3, 4, 5). It is interesting
that, nominally, the lowest-risk scenario was not the
most restrictive (Option 5; third-lowest), but rather
Option 4, which allowed 2 alternative lanes for traffic
from the east and southeast of each port. This may sug-
gest that the shortest-path (east—west) routes may, on
average, traverse cells with relatively high occurrence
of right whales. It is important to note, however, that
the top 3 scenarios were virtually identical when con-
sidering the variation in estimated risk for each, with
all system uncertainties taken into consideration.

One of the major limitations in the estimation of risk
for current shipping traffic patterns is the quality of
shipping data. MSRS data are only estimated paths of
incoming vessels which report to the MSRS system.
Importantly, it does not include the outbound move-
ment of ship traffic, which could bias the estimates of
realized risk. Recently, an improved system of vessel
traffic monitoring based on automatic identifications
systems (AIS) has been collected. AIS provides a

means for ships to report their identification, position,
course and speed to other ships and to vessel traffic
services (VTS) stations (Harre 2000). This provides
very detailed information for all commercial ships
exceeding 65 feet (19.8 m) in length, both outgoing
and incoming. As they become available, AIS data
could be used to track monthly or annual variation in
risk, as well as compliance with implemented lanes.
Important future work also includes a comparison
with, and possible calibration of, MSRS data.

It is possible that estimates of right whale occurrence
presented here are biased by partial availability. Dis-
tinct from detection, partial availability occurs when
whales are present on a particular survey transect but
cannot be seen because they are submerged. In this
application, since we are estimating relative (rather
than absolute) risk, availability bias is only of concern
if we believe such a bias varies over space; this would
inhibit valid comparison of encounter rates, and hence
risk, among cells in the MSRS zone. One may argue,
however, if whales spend significantly more time be-
low surface in particular areas of their habitat, they are
less vulnerable to ship strike because of this behavior.
Such behavioral differences may exist, for example,
depending on whether mothers are accompanied by
calves (Szabo & Duffus 2008).

Most strategies for mitigating ship strike risk for
whales involve either vessel speed reductions, or sepa-
rating whales and vessels spatially by re-routing ves-
sels, or some combination of both (Merrick & Cole
2007, Vanderlaan et al. 2008). There is some evidence
that reduced speed may reduce the fatality rate of col-
lisions (Vanderlaan & Taggart 2007), suggesting that
restrictions on both speed and routes are complemen-
tary. However, the full implication of reduced speed on
the total risk of collision and mortality is not completely
known. Additional research to fully examine the com-
bined effects of speed restrictions and routing mea-
sures should be the next step in evaluating the effec-
tiveness of conservation measures. In the absence of
additional information, conservation actions based on
separating vessels and whales spatially seem most
prudent.

This research represents an important early step in
estimating ship strike risk for right whales in the SEUS.
A Bayesian approach facilitated the adequate char-
acterization of uncertainty in risk that is manifested
by uncertainties in model parameter estimates and
related, in turn, to the quantity and quality of support-
ing data. We have shown that the model is flexible
enough to be able to evaluate a range of alternative
routes. Future model enhancements may include an
optimization component, which uses estimated para-
meters to identify optimal shipping lanes, subject to
relevant constraints, such as economic considerations.
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