An Age-Structured Assessment Model for Georges Bank Winter Flounder

by

Jon K.T. Brodziak
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Authors/Editors</th>
<th>Date</th>
</tr>
</thead>
</table>
An Age-Structured Assessment Model for Georges Bank Winter Flounder

by

Jon K.T. Brodizak

Woods Hole Lab., National Marine Fisheries Serv., Woods Hole, MA 02543-1026
Northeast Fisheries Science Center Reference Documents

This series is a secondary scientific series designed to assure the long-term documentation and to enable the timely transmission of research results by Center and/or non-Center researchers, where such results bear upon the research mission of the Center (see the outside back cover for the mission statement). These documents receive internal scientific review but no technical or copy editing. The National Marine Fisheries Service does not endorse any proprietary material, process, or product mentioned in these documents.

All documents issued in this series since April 2001, and several documents issued prior to that date, have been copublished in both paper and electronic versions. To access the electronic version of a document in this series, go to http://www.nefsc.nmfs.gov/nefsc/publications/series/crdlist.htm. The electronic version will be available in PDF format to permit printing of a paper copy directly from the Internet. If you do not have Internet access, or if a desired document is one of the pre-April 2001 documents available only in the paper version, you can obtain a paper copy by contacting the senior Center author of the desired document. Refer to the title page of the desired document for the senior Center author's name and mailing address. If there is no Center author, or if there is corporate (i.e., non-individualized) authorship, then contact the Center's Woods Hole Laboratory Library (166 Water St., Woods Hole, MA 02543-1026).

This document's publication history is as follows: manuscript submitted for review--December 31, 2001; manuscript accepted through technical review--March 4, 2002; manuscript accepted through policy review--March 18, 2002; and camera-ready copy submitted for publication--March 20, 2002. This document may be cited as:

TABLE OF CONTENTS

TABLE OF CONTENTS ... iii
ABSTRACT .. iv
INTRODUCTION ... 1
POPULATION DYNAMICS MODEL ... 1
STATISTICAL ESTIMATION APPROACH .. 7
SOUTHERN DEMERSAL WORKING GROUP RECOMMENDATIONS 14
MODEL DIAGNOSTICS .. 15
MODEL RESULTS ... 16
CONCLUSIONS ... 18
ACKNOWLEDGMENTS ... 19
LITERATURE CITED .. 20
TABLES ... 21
FIGURES ... 22
APPENDIX ... 38
ABSTRACT

An age-structured assessment model for Georges Bank winter flounder (*Pseudopleuronectes americanus*) stock during 1964-2000 is developed to provide an alternative to VPA-based analyses of stock status. Age-structured population dynamics of winter flounder are modeled using standard forward-projection methods for statistical catch-at-age analyses.

Trends in the relative abundance of population biomass are measured by research survey indices for Georges Bank winter flounder. Three surveys were available: the NEFSC autumn groundfish survey (1963-2000), the NEFSC spring groundfish survey (1968-2000), and the Canadian spring groundfish survey (1987-2000). Two alternative models were examined in detail: (1) a model that used all three research survey time series (*WINC, WIN*ter flounder model including Canadian survey) and (2) a model that used the two NEFSC research survey time series (*WIN, WIN*ter flounder model). Both the *WINC* and *WIN* models provided similar trends in population biomass and fishing mortality, indicating that results were robust to the inclusion of the Canadian research survey time series. Based on model diagnostics, the *WIN* model that used the two NEFSC research survey time series provided the best fit to the data.

Conditioned on the accuracy of the model and the assessment data, results of the best fit model indicate that: (i) Spawning biomass exceeded 20,000 mt in 1964 but declined to less than 3,000 mt in the early-1990s. Spawning biomass in year 2000 was roughly 9,900 mt; (ii) Fishing mortality (fully-recruited, age-4 estimate) increased steadily from less than 0.2 in the early-1960s to over 1.0 in the late-1980s and early-1990s, but has declined since then to roughly 0.32 in 2000; (iii) Stock-recruitment data show that the stock produced large year classes (>15 million recruits) in the 1960s and 1970s when spawning biomass was near or above 10,000 mt; (iv) Surplus production data show that the stock was most productive during the 1970s and early-1980s, with annual surplus production of roughly 3,000 mt. Since the mid-1980s annual surplus production has decreased to roughly 2,000 mt.
INTRODUCTION

An age-structured assessment model for Georges Bank winter flounder (*Pseudopleuronectes americanus*) stock during 1964-2000 is developed to provide an alternative to VPA-based analyses of stock status. Age-structured population dynamics of winter flounder are modeled using standard forward-projection methods for statistical catch-at-age analyses (Fournier and Archibald 1982, Methot 1990, Ianelli and Fournier 1998, Quinn and Deriso 1999). We describe the underlying population dynamics model, statistical estimation approach, Southern Demersal Working Group recommendations, model diagnostics, and model results below.

POPULATION DYNAMICS MODEL

The age-structured model is based on forward projection of population numbers at age. This modeling approach is based on the principle that population numbers through time are determined by recruitment and total mortality at age through time. That is, if one knew the time series of inputs and outputs to the population numbers and the initial population size at age, then one would have complete information on the population size, spawning biomass, and total mortality through time. In practice, one uses available sampling data and a statistical model of how the data were observed to estimate parameters to determine the time series of population sizes.

Population numbers at age through time are key variables in the age-structured model and the population numbers at age matrix \(N = (N_{y,a})_{y,A} \) contains this information. This matrix has dimensions \(Y \) by \(A \), where \(Y \) is the number of years in the assessment time horizon and \(A \) is the number of age classes modeled. The oldest age (\(A \)) comprises a plus-group consisting of all fish age-\(A \) and older. The time horizon for winter flounder is 1964-2000 (\(Y = 37 \)). The choice of time horizon was determined by the availability of landings data which are first available in 1964 and a relative abundance index, the NEFSC autumn groundfish survey. The number of age classes in the model is 7, representing ages 1 through 7+.

1
Recruitment (numbers of age-1 fish) in year \(y \) (\(R_y \)) is modeled as a lognormal deviation from an average recruitment parameter (\(\mu_R \)), where the \(V_y \) are independent and identically distributed (iid) normal random variables with zero mean and constant variance.

\[
R_y = \mu_R e^{V_y}
\]

(1)

For all years, \(y \), from 1965-2000, \(R_y = N_{y1} \) is estimated from the recruitment deviation and average recruitment parameter. The recruitment deviations are constrained to sum to zero over all years.

Initial population abundance at age in 1964 is based on recruitment deviations from average recruitment for 1959-1964 and natural mortality. For all ages \(a < A \), the numbers at age in the first year (\(y_{\text{start}} = 1 \)) are estimated as a lognormal deviation from average recruitment as reduced by natural mortality (\(M \))

\[
N_{1,a} = \mu_R e^{V_{y_{\text{start}}-a+1}} e^{-(a-1)M}
\]

(2)

For the plus group, the initial numbers at age is the sum of numbers at ages 7 and older based on average recruitment and recruitment deviations for ages 7 and older in 1964 along with the natural mortality rate

\[
N_{1,A} = \mu_R e^{V_{y_{\text{start}}-A+1}} e^{-(A-1)M} \frac{1 - e^{-M}}{1 - e^{-M}}
\]

(3)

Total mortality rates at age through time are also key variables in the population dynamics model. The total instantaneous mortality at age matrix \(Z = (Z_{y,a})_{Y \times A} \) and the instantaneous fishing mortality at age matrix \(F = (F_{y,a})_{Y \times A} \) both have dimensions \(Y \) by \(A \). Instantaneous natural mortality at age is assumed to be constant with \(M \) equal to 0.2. Thus, for all years \(y \), and age classes \(a \), total mortality at age is the sum of fishing and natural mortality

\[
Z_{y,a} = F_{y,a} + M
\]

(4)

To determine total mortality, fishing mortalities will be estimated. While natural mortality might be estimable in some rare data-rich situations, \(M \) is often highly correlated with other parameters and is not estimable in practice (see for example, Schnute and Richards 1995).
Population numbers at age through time are computed from the initial population numbers at age, recruitment through time, and total mortality at age through time. For each age class, indexed by “a”, that is younger than the plus group (a < A), the number at age is sequentially determined using a standard survival model

\[N_{y,a} = N_{y-1,a-1}e^{-Z_{y-1,a-1}} \]

(5)

For the plus group, numbers at age are the sum of survivors of age A-1 and survivors from the plus group in the preceding year

\[N_{y,A} = N_{y-1,A-1}e^{-Z_{y-1,A-1}} + N_{y-1,A}e^{-Z_{y-1,A}} \]

(6)

Estimation of fishing mortality at age is facilitated by making the simplifying assumption that fishing mortality can be modeled as a separable process. This assumption implies that \(F_{y,a} \) is determined from the average selectivity pattern of age-a fish (\(S_a \)) and fully-recruited fishing mortality in year \(y \) (\(F_y \))

\[F_{y,a} = S_a F_y \]

(7)

While more complicated models of time-varying selectivity may be useful, this approximation is likely to be satisfactory if observation errors in the catch-at-age data are substantial.

Fully-recruited fishing mortality in each year is modeled as a lognormal deviation from average fishing mortality (\(\mu_F \)), where the \(U_y \) are iid normal random variables with zero mean and constant variance

\[F_y = \mu_F e^{U_y} \]

(8)

The fishing mortality deviations (\(U_y \)) are constrained to sum to zero over all years.

Fishery selectivity at age is modeled as being time-invariant throughout the assessment time horizon. This approach was chosen for parsimony and because there was believed to be
substantial errors in the observed fishery age composition, especially in recent years. In particular, winter flounder catch-at-age data to estimate fishery selectivity are limited to 1982-2000, a period when the fishery was prosecuted primarily by domestic trawl fishing vessels. Since 1993, fishery sampling intensity of Georges Bank winter flounder catches has been relatively low. As a result, temporal changes in fishery selectivity would likely be difficult to detect given relatively high measurement errors in the fishery age composition data.

The average fishery selectivity at age is estimated for ages 1 through 6. For ages 7 and older, fishery selectivity is assumed to be equal to the age-6 selectivity value. This approach was chosen to reflect the fact that age-7 fish were not likely to differ much from age-6 fish in their fishery selectivity. Two constraints are applied to the estimated selectivity at age coefficients. First, the selectivities are constrained to average 1 for estimated ages. This forces the scale of each coefficient to be near unity. Second, a constraint is applied to ensure that estimated selectivities change smoothly between adjacent ages. Details of the implementation of both constraints are described in the section on statistical estimation approach. Last, for each year, the selectivity at age values are rescaled so that the maximum selectivity at age value is unity. This rescaling ensures that estimated fully-recruited fishing mortality rates are directly comparable to biological reference points such as $F_{0.1}$.

Fishery removals from the population are accounted for through the fishery catch numbers at age matrix $C=(C_{y,a})_{YxA}$ and the fishery catch biomass at age (yield) matrix $Y=(Y_{y,a})_{YxA}$. Both C and Y have dimensions Y by A. Fishery catch at age in each year is computed in a standard manner from Baranov’s catch equation using population numbers, fishing mortality, and total mortality at age

$$C_{y,a} = \frac{N_{y,a} F_{y,a} \left(1 - e^{-Z_{y,a}}\right)}{Z_{y,a}}$$ \hspace{1cm} (9)

Catch biomass at age in each year $(Y_{y,a})$ is approximated by the product of catch numbers at age and the long-term mean weights at age, where W_a is the mean weight at age computed as the
average of mean Georges Bank weights at age from fishery sampling during 1982-2000

\[Y_{y,a} = C_{y,a} W_a \] \hfill (10)

Use of the long-term mean weights at age is likely to be a useful approximation unless mean weights at age have varied substantially through time. Since fishery sampling has been relatively poor in recent years, the use of a long-term average was considered to be adequate given the likely errors in the observed annual mean weights at age computed from fishery samples.

Total fishery catch biomass in year \(y \) (\(Y_y \)) is the sum of yields by age class

\[Y_y = \sum_{a=1}^{A} Y_{y,a} \] \hfill (11)

The calculated total fishery catch biomass time series is compared to observed values using a lognormal probability model. This model feature was included because it was expected that observed catches were not accurately reported in some years and that discards were not estimated for inclusion in the catch-at-age data.

Similarly, the proportion of fishery catch at age \(a \) in year \(y \) (\(P_{y,a} \)) is computed from estimated catch numbers

\[P_{y,a} = \frac{C_{y,a}}{\sum_a C_{y,a}} \] \hfill (12)

The time series of fishery proportions at age are fitted to observed fishery values using a multinomial probability model (see for example, Fournier and Archibald 1982, Quinn and Deriso 1999). This model feature accounts for the possibility that the fishery catch-at-age data are measured with error.

Trends in the relative abundance of population biomass are measured by research survey indices for Georges Bank winter flounder. Three surveys were available: the NEFSC autumn groundfish survey (1963-2000), the NEFSC spring groundfish survey (1968-2000), and the Canadian spring
groundfish survey (1987-2000). The survey biomass index in year y (I_y) for any of the surveys is modeled as a catchability coefficient (Q_{SURVEY}) times the population biomass that is vulnerable to the survey, where $S_{SURVEY,a}$ is survey selectivity at age a and p_{SURVEY} is the fraction of annual total mortality that occurs prior to the survey

$$I_y = Q_{SURVEY} \sum_a S_{SURVEY,a} W a N_{y,a} e^{-p_{SURVEY} z_{y,a}}$$

(13)

The survey biomass index time series are fitted to observed values using a lognormal probability model. This model feature accounts for the possibility that the survey relative abundance indices are measured with error.

Survey selectivity accounts for differential vulnerability of winter flounder age classes to the survey fishing gear and also for differential vulnerability due to differences in the behavior and distribution of juvenile and adult fish. For each of the three surveys, selectivity at age is modeled using Thompson’s exponential-logistic model (Thompson 1994), where α, β, and γ are parameters and survey selectivity for winter flounder is assumed to be time invariant

$$S_{SURVEY,a} = \frac{1}{1 - \gamma} \left(\frac{1 - \gamma}{\gamma} \right)^\gamma \left(\frac{e^{\alpha \gamma (\beta - a)}}{1 + e^{\alpha \gamma (\beta - a)}} \right)$$

(14)

This model has the useful property that the maximum selectivity value is unity. For values of $\gamma > 0$ survey selectivity is dome-shaped, and survey selectivity is flat-topped (i.e., constant at older ages) when $\gamma = 0$.

Survey age composition data provide information on the relative abundance of winter flounder age classes captured with the survey gear. Survey catch proportion at age a in year y ($P_{SURVEY,y,a}$) is computed from survey selectivity, the fraction of mortality occurring prior to the survey, and population numbers at age
\[P_{\text{SURVEY},y,a} = \frac{S_{\text{SURVEY},a} N_{y,a} e^{-p_{\text{SURVEY}}Z_{y,a}}}{\sum_a S_{\text{SURVEY},a} N_{y,a} e^{-p_{\text{SURVEY}}Z_{y,a}}} \]

The time series of survey proportions at age are fitted to observed fishery values using a multinomial probability model. This model feature accounts for the possibility that the survey age composition data are measured with error.

STATISTICAL ESTIMATION APPROACH

The population dynamics model is fit to observed data using an iterative maximum likelihood estimation approach. The statistical model consists of ten likelihood components \((L_j)\) and two penalty terms \((P_k)\). The model objective function \((\Lambda)\) is the weighted sum of the likelihood components and penalties where each summand is multiplied by an emphasis coefficient \((\lambda_j)\) that reflects the relative importance of the data.

\[\Lambda = \sum_j \lambda_j L_j + \sum_k \lambda_k P_k \]

Each likelihood component is written as a negative log-likelihood so that the maximum likelihood estimates of model parameters are obtained by minimizing the objective function. The Automatic Differentiation Model Builder software is used to estimate a total of roughly 95 parameters depending upon the model configuration. The likelihood components and penalty terms are described below.

1. **Recruitment**

Recruitment strength is modeled by lognormal deviations from average recruitment for the period 1959-2000. A total of 42 recruitment deviation parameters \((V_y)\) and one average recruitment parameter \((\mu_R)\) are estimated based on the objective function minimization. The recruitment likelihood component \((L_1)\) is
\[L_1 = \frac{n_y}{2} \sum_y V_y^2 \]

(17)

where

\[V_y = \ln(R_y) - \ln(\mu_y) \]

and the \(V_y \) are iid normal random variables with zero mean and constant variance and \(n_y \) is the number of recruitment deviations.

2. Fishery age composition

Fishery age composition is modeled as a multinomial distribution for sampling catch numbers at age. The constant \(N_{E,Fishery,y} \) denotes the effective sample size for the multinomial distribution for year \(y \) and is assumed to be 200 fish per year during 1982-1993, 100 fish per year during 1994-1997 and 2000, and 50 fish per year during 1998-1999. These different sample sizes were chosen to reflect the relative intensity of fishery sampling of Georges Bank winter flounder. The observed number of fish at age in the fishery samples is computed as the effective sample size times the observed proportion at age, denoted with a superscript “OBS” for all variables.

The negative log-likelihood of the multinomial sampling model for the fishery ages (\(L_2 \)) is

\[L_2 = - \sum_y N_{E,Fishery,y} \sum_a \left(P_{y,a}^{OBS} \ln P_{y,a}^{OBS} - P_{y,a}^{OBS} \ln P_{y,a}^{OBS} \right) \]

(19)

The second term in summation over ages indexed by “a” is a constant that scales \(L_2 \) to be zero if the observed and predicted proportions were identical. Six fishery selectivity coefficients (\(S_1 \) through \(S_6 \)) are estimated based on the objective function minimization.

3. NEFSC Fall survey age composition

Fall survey age composition is also modeled as a multinomial distribution for sampling survey catch numbers at age. The constant \(N_{E,Fall,y} \) denotes the effective sample size for the multinomial distribution for year \(y \) and is assumed to be constant across time for the years 1982-2000 when
winter flounder autumn survey catch-at-age data are available. The observed number of fish at age in the survey samples is computed as the effective sample size times the observed proportion at age. The effective sample size was assumed to be 100 fish in each year. The negative log-likelihood of the multinomial sampling model for the autumn survey ages (L_3) is

$$L_3 = -\sum_y N_{E,Fall,y} \sum_a \left(P_{Fall,y,a}^{OBS} \ln P_{Fall,y,a} - P_{Fall,y,a}^{OBS} \ln P_{Fall,y,a}^{OBS} \right)$$

(20)

As with the fishery age composition, the second term in the summation over the age index “a” is a constant that scales L_3 to be zero if the observed and predicted proportions were identical.

Three fall survey selectivity coefficients ($a_{Fall},$ $\beta_{Fall},$ γ_{Fall}) are estimated based on the objective function minimization using the survey selectivity model (Eqn. 14).

4. NEFSC Fall survey biomass index

The fall survey biomass index is modeled by lognormal deviations of predicted values from observed values during 1964-2000, where the log-transformed deviations $D_{Fall,y}$ are iid normal random variables with zero mean and constant variance

$$I_{Fall,y}^{OBS} = I_{Fall,y} e^{D_{Fall,y}}$$

(21)

The fall survey biomass likelihood component (L_4) is

$$L_4 = \frac{n_4}{2} \sum_y D_{Fall,y}^2$$

(22)

where n_4 is the number of observed fall survey index values. One fall survey catchability coefficient (Q_{Fall}) is estimated based on the objective function minimization.

5. NEFSC Spring survey age composition

Spring survey age composition is also modeled as a multinomial distribution for sampling survey catch numbers at age. The constant $N_{E,Spr,y}$ denotes the effective sample size for the multinomial distribution for year y and is assumed to be constant for the years 1982-2000 when winter flounder spring survey catch-at-age data are available. The observed number of fish at age in the
survey samples is computed as the effective sample size times the observed proportion at age. The effective sample size was assumed to be 100 fish in each year. The negative log-likelihood of the multinomial sampling model for the spring survey ages \(L_5 \) is

\[
L_5 = -\sum_{y} N_{E,Spr,y} \sum_{a} \left(P_{Spr,y,a}^{OBS} \ln P_{Spr,y,a} - P_{Spr,y,a}^{OBS} \ln P_{Spr,y,a} \right)
\]

(23)

Three spring survey selectivity coefficients \(\alpha_{Spr}, \beta_{Spr}, \gamma_{Spr} \) are estimated based on the objective function minimization using the survey selectivity submodel (Eqn. 14).

6. NEFSC Spring survey biomass index

The spring survey biomass index is modeled by lognormal deviations of predicted values from observed values during 1968-2000, where the log-transformed deviations \(D_{Spr,y} \) are iid normal random variables with zero mean and constant variance

\[
I_{Spr,y}^{OBS} = I_{Spr,y} e^{D_{Spr,y}}
\]

(24)

The spring survey biomass likelihood component \(L_6 \) is

\[
L_6 = \frac{n_6}{2} \sum_{y} D_{Spr,y}^2
\]

(25)

where \(n_6 \) is the number of observed spring survey index values. One spring survey catchability coefficient \(Q_{Spr} \) is estimated based on the objective function minimization.

7. Canadian Spring survey age composition

Canadian spring survey age composition is also modeled as a multinomial distribution for sampling survey catch numbers at age. The constant \(N_{E,CANSpr,y} \) denotes the effective sample size for the multinomial distribution for year \(y \) and is assumed to be constant for the years 1987-2000 when winter flounder Canadian spring survey catch-at-age data are available. The observed number of fish at age in the survey samples is computed as the effective sample size times the observed proportion at age. The effective sample size was assumed to be 200 fish in each year. The negative log-likelihood of the multinomial sampling model for the Canadian spring survey ages \(L_7 \) is
\[L_7 = -\sum_y N_{E,CANSpr,y} \sum_a \left(P_{OBS,CANSpr,y,a} \ln P_{CANSpr,y,a} - P_{OBS,CANSpr,y,a} \ln P_{CANSpr,y,a} \right) \] (26)

Three Canadian spring survey selectivity coefficients \((\alpha_{CANSpr}, \beta_{CANSpr}, \gamma_{CANSpr})\) are estimated based on the objective function minimization using the survey selectivity model (Eqn. 14).

8. Canadian Spring survey biomass index

The Canadian spring survey biomass index is modeled by lognormal deviations of predicted values from observed values during 1987-2000, where the log-transformed deviations \(D_{CANSpr,y}\) are iid normal random variables with zero mean and constant variance

\[I_{OBS,CANSpr,y} = I_{CANSpr,y} e^{D_{CANSpr,y}} \] (27)

The Canadian spring survey biomass likelihood component \((L_8)\) is

\[L_8 = \frac{n_8}{2} \sum_y D_{CANSpr,y}^2 \] (28)

where \(n_8\) is the number of observed Canadian spring survey index values. One Canadian spring survey catchability coefficient \((Q_{CANSpr})\) is estimated based on the objective function minimization.

9. Catch biomass

Catch biomass is modeled by lognormal deviations of predicted values from observed values during 1934-1999, where \(T_y\) are iid normal random variables with zero mean and constant variance

\[Y_{y}^{OBS} = Y_y e^{T_y} \] (29)

The catch biomass likelihood component \((L_9)\) is

\[L_9 = \frac{n_9}{2} \sum_y T_y^2 \] (30)

where \(n_9\) is the number of observed catch biomass values.
10. Fishing mortality

Annual values of fully-recruited fishing mortality are modeled as lognormal deviations from average fishing mortality during the period 1934-2000. A total of 37 fishing mortality deviation parameters \((U_y)\) and one average fishing mortality parameter \((F)\) are estimated based on the objective function minimization. The fishing mortality likelihood component \((L_{10})\) is

\[
L_{10} = \frac{n_{10}}{2} \sum_y U_y^2
\]

(31)

where

\[
U_y = \ln(F_y) - \ln(\mu_F)
\]

and \(n_{10}\) is the number of observed catch values.

11. Fishery selectivity

Two constraints on fishery selectivity are included in a penalty function. The fishery selectivity penalty function \((P_1)\) is

\[
P_1 = \left(\frac{1}{7} \sum_{a=1}^{7} S_a - 1\right)^2 + \sum_{a=1}^{5} \left(S_a - 2S_{a+1} + S_{a+2} \right)^2
\]

(33)

The first term constrains the fishery selectivity coefficients to scale to an average of 1. The second term constrains the fishery selectivity coefficient of age \(a+1\) to be near to the linear prediction of this value interpolated from age \(a\) and age \(a+2\) selectivities over the range of estimated selectivity coefficients.

12. Fishing mortality penalty

One constraint on fishing mortality is imposed to ensure that during the early phases of the iterative estimation process the observed catch could not be generated by an extremely small \(F\) on an extremely large population size. The fishing mortality penalty function \((P_2)\) is
\[P_2 = 10 \sum_y (F_y - 0.1)^2 \iff \text{phase} < 3 \]

\[P_2 = \frac{1}{1000} \sum_y (F_y - 0.1)^2 \iff \text{phase} \geq 3 \] (34)

The constraint is weighted with a value of 10 for the initial estimation phases and is weighted with a value of 0.001 for all later estimation phases. The value of 0.1 was used because this value is sufficient to ensure that the estimated mean F will be on the order of the value of natural mortality for Georges Bank winter flounder.

Initial values are input for all parameters before the estimation phases are conducted. A total of nine estimation phases were used for the iterative minimization of the objective function. Any parameters first estimated in a given phase, say N, are estimated in all subsequent phases, N+1, N+2, etc. The first phase estimates average recruitment. The second phase estimates average fishing mortality and fishing mortality deviations. The third phase estimates recruitment deviations. The fourth phase estimates fishery and NEFSC spring survey selectivity coefficients. The fifth phase estimates the spring survey catchability coefficient. The sixth phase estimates the NEFSC fall survey selectivity coefficients. The seventh phase estimates the fall survey catchability coefficient. The eighth phase estimates the Canadian spring survey selectivity coefficients. The ninth phase estimates the Canadian spring survey catchability coefficient.

The twelve emphasis values (\(\lambda_s \)) used for the baseline model were:
1. Recruitment \(\lambda_1=10 \)
2. Fishery age composition \(\lambda_2=1 \)
3. NEFSC Fall survey age composition \(\lambda_3=1 \)
4. NEFSC Fall survey biomass index \(\lambda_4=10 \)
5. NEFSC Spring survey age composition \(\lambda_5=1 \)
6. NEFSC Spring survey biomass index \(\lambda_6=10 \)
7. Canadian Spring survey age composition \(\lambda_7=1 \)
8. Canadian Spring survey biomass index \(\lambda_8=10 \)
SOUTHERN DEMERSAL WORKING GROUP RECOMMENDATIONS

After making some adjustments to the initial model configuration to better reflect the timing of the surveys and the emphasis factors for the fishery and survey age composition likelihood components, the Southern Demersal Working Group recommended that two final models be examined: (1) a model that used all three research survey time series (WINC, WINTER flounder model including Canadian survey) and (2) a model that used the two NEFSC research survey time series (WIN, WINTER flounder model). Both the WINC and WIN models provided similar trends in population biomass and fishing mortality, indicating that results were robust to the inclusion of the Canadian research survey time series.
MODEL DIAGNOSTICS

Model diagnostics showed that the WIN model provided a better fit to the observed catch biomass series (RMSE=0.137) than the WINC model (RMSE=0.149). The WIN model also provided a better fit to the NEFSC fall biomass series (RMSE=0.356) than the WINC model (RMSE=0.373). The fits to the NEFSC spring biomass series were nearly identical for the two models (WIN, RMSE=0.472 vs WINC, RMSE=0.473). In addition, the trend in the observed Canadian spring biomass series was lower than the WINC model predictions during 1998-2000, suggesting that the Canadian survey was not tracking relative abundance in recent years. Overall, the WIN model that used the two NEFSC research survey time series provided the best fit to the catch biomass and NEFSC survey biomass series while the WINC model provided a poor fit to the Canadian survey biomass series in recent years (see Figure 4 below). The condition numbers of the hessian matrices of the two models were also different with the WINC model having a much higher condition number ($\kappa=6.83\cdot10^{12}$) than the WIN model ($\kappa=2.83\cdot10^{7}$). This indicated that the numerical solution of the WINC model was not well-determined relative to the WIN model. Based on model diagnostics, the WIN model that used the two NEFSC research survey time series was considered to be the best model among the statistical catch-at-age models examined for winter flounder. Computer code to fit the WIN model, the input data file, and the standard deviation parameter file are listed in the Appendix.

Plots of diagnostics for the two models include the discrepancies between observed data and predicted values for the catch biomass series (Figure 1), the fall survey biomass series (Figure 2), the spring survey biomass series (Figure 3), and the Canadian spring survey biomass series (Figure 4, shown for the WINC model only). For the best fit WIN model, diagnostic plots
include the fishery age composition series (Figure 5), the fall survey age composition series (Figure 6), and the spring survey age composition series (Figure 7). For the WINC model, a diagnostic plot of the Canadian spring survey age composition series is also shown (Figure 8).

MODEL RESULTS

Model estimates of spawning biomass, fishing mortality, recruitment, and population biomass for the WIN model during the period 1963-2000 are listed in Table 1. Fishery and survey selectivity estimates at age are shown in Figure 9. Recruitment estimates are shown in Figure 10 (see also Table 1). Population biomass estimates are shown in Figure 11 (see also Table 1). Spawning biomass estimates (at start of the spawning season) are shown in Figure 12 (see also Table 1). Fishing mortality estimates are shown in Figure 13 (see also Table 1). Stock-recruitment data are shown in Figure 14. Surplus production implied by the age-structured estimates of exploitable biomass and observed catches are shown in Figure 15.

Other model outputs included depletion ratios for year 2000, relative to 1964, for spawning biomass (46%) and population biomass (53%). Similarly, depletion ratios for year 2000, relative to 1982, were computed for spawning biomass (88%) and population biomass (81%). Long-term average recruitment was estimated to be 5.550 million age-1 fish during 1959-1999.

Sensitivity to the assumed value of M was investigated by systematically varying this parameter using the likelihood profile feature of the AD Model Builder software. This analysis showed that the model was not stable for moderate departures from M=0.2. In particular, running the baseline model under alternative assumptions about M showed that the model did not converge in its final
configuration for M=0.195, 0.196, 0.2005, 0.201, 0.2015, 0.2025, 0.203, while it did converge for M=0.197 (-lnL=3445.2), M=0.198 (-lnL=3444.8), M=0.199 (-lnL=3444.2), and M=0.202 (-lnL=3443.0). The objective function value for the assumed value of M=0.2 was -lnL=3443.8. This suggested that the objective function surface was a complicated function of natural mortality and that the model was sensitive to the assumed value.

Based on the Southern Demersal Working Group’s recommendations, a sensitivity analysis was conducted on the value of the effective sample size time series for the fishery age composition likelihood. This was done to see how the model results might change if different effective sample sizes were used. The SDWG suggested multiplying the effective sample size time series by $\frac{1}{2}$ and 2. The use of multipliers of less than 0.8 did not lead to model convergence, presumably because there was insufficient information assigned to the fishery age composition in these cases. Nonetheless, estimated spawning biomass, a key model output, was insensitive to using effective sample sizes that were 80% and 200% of the baseline values, which ranged from 50 to 200 fish (Figure 16). Overall, this suggested that the model solution would not be well-determined if effective sample sizes for the fishery age composition were below 40 fish per year, but, for values above this, the results appeared to be robust.
CONCLUSIONS

Conditioned on the accuracy of the model and the assessment data, results of the best fit model indicate that:

• The Georges Bank winter flounder stock appears to have a dome-shaped fishery selectivity pattern with age-4 fish being fully-recruited (Figure 9).

• The NEFSC fall bottom trawl survey appears to have a dome-shaped selectivity pattern and provides an index of the relative number of age-5 fish (Figure 9).

• The NEFSC spring bottom trawl survey appears to have an asymptotic selectivity pattern and provides an index of the relative number of age-3 and older fish (Figure 9).

• Recruitment appears to have been relatively strong during the early-1970 to early-1980s with the 1974 year class being the largest observed during 1964-2000 (Figure 10).

• Population biomass was over 20,000 mt in the early-1960s, declined to less than 5,000 mt in the early-1990s, and has subsequently increased to roughly 10,000 mt in year 2000 (Figure 11).

• Spawning biomass exceeded 20,000 mt in 1964 but declined to less than 3,000 mt in the early-1990s (Figure 12). Spawning biomass in year 2000 was roughly 9,900 mt.

• Fishing mortality (fully-recruited, age-4 estimate) increased steadily from less than 0.2 in the early-1960s to over 1.0 in the late-1980s and early-1990s (Figure 13), but has declined since then to roughly 0.32 in 2000.

• Stock-recruitment data show that the stock produced large year classes (>15 million recruits) in the 1960s and 1970s when spawning biomass was near or above 10,000 mt (Figure 14).
• Surplus production data show that the stock was most productive during the 1970s and early-1980s (Figure 15), with annual surplus production of roughly 3,000 mt. Since the mid-1980s annual surplus production has decreased to roughly 2,000 mt.

• The results of the age-structured model appear to be sensitive to the assumed value of natural mortality of 0.2.

• The results of the age-structured model do not appear to be sensitive to the effective sample size for the fishery age composition data provided that effective sample sizes of 50-200 fish are collected each year.

ACKNOWLEDGMENTS

I thank the members of the Southern Demersal Working Group for their helpful comments and suggestions. I also thank the members of the 34th Northeast Regional Stock Assessment Review Committee for their helpful comments and thoughtful review.
LITERATURE CITED

Table 1. Baseline model results for Georges Bank winter flounder.

<table>
<thead>
<tr>
<th>Year</th>
<th>Population biomass (mt)</th>
<th>Spawning biomass (mt)</th>
<th>Exploitable biomass (mt)</th>
<th>Recruitment (thousands of age-1 fish)</th>
<th>Fishing mortality</th>
<th>Surplus production (mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1964</td>
<td>22826.2</td>
<td>21676.4</td>
<td>13539.9</td>
<td>1445.9</td>
<td>0.13</td>
<td>954.8</td>
</tr>
<tr>
<td>1965</td>
<td>20011.2</td>
<td>18943.5</td>
<td>12977.7</td>
<td>2063.2</td>
<td>0.15</td>
<td>-425.2</td>
</tr>
<tr>
<td>1966</td>
<td>20039.7</td>
<td>16295.8</td>
<td>10865.5</td>
<td>15293.4</td>
<td>0.24</td>
<td>195.9</td>
</tr>
<tr>
<td>1967</td>
<td>18517.5</td>
<td>15626.9</td>
<td>8864.3</td>
<td>3081.4</td>
<td>0.36</td>
<td>3125.2</td>
</tr>
<tr>
<td>1968</td>
<td>16539.7</td>
<td>14772.4</td>
<td>9640.6</td>
<td>4455.3</td>
<td>0.25</td>
<td>2345.6</td>
</tr>
<tr>
<td>1969</td>
<td>15379.3</td>
<td>13455.5</td>
<td>9987.1</td>
<td>4786.8</td>
<td>0.28</td>
<td>1207.7</td>
</tr>
<tr>
<td>1970</td>
<td>14996.9</td>
<td>12154.5</td>
<td>8676.8</td>
<td>9241.8</td>
<td>0.35</td>
<td>1457.4</td>
</tr>
<tr>
<td>1971</td>
<td>14362.9</td>
<td>11503.7</td>
<td>7418.2</td>
<td>5966.8</td>
<td>0.69</td>
<td>3524.7</td>
</tr>
<tr>
<td>1972</td>
<td>14333.2</td>
<td>9849.8</td>
<td>6759.9</td>
<td>15867.4</td>
<td>0.87</td>
<td>3678.6</td>
</tr>
<tr>
<td>1973</td>
<td>12751.0</td>
<td>9160.7</td>
<td>5926.5</td>
<td>6306.8</td>
<td>0.79</td>
<td>3680.8</td>
</tr>
<tr>
<td>1974</td>
<td>11413.1</td>
<td>9048.7</td>
<td>6631.3</td>
<td>5778.1</td>
<td>0.51</td>
<td>2714.0</td>
</tr>
<tr>
<td>1975</td>
<td>13598.3</td>
<td>8868.6</td>
<td>7127.4</td>
<td>18178.6</td>
<td>0.54</td>
<td>2718.8</td>
</tr>
<tr>
<td>1976</td>
<td>13691.9</td>
<td>10358.8</td>
<td>6909.2</td>
<td>4439.5</td>
<td>0.32</td>
<td>3999.3</td>
</tr>
<tr>
<td>1977</td>
<td>15039.8</td>
<td>12052.0</td>
<td>9015.5</td>
<td>9322.5</td>
<td>0.45</td>
<td>3840.5</td>
</tr>
<tr>
<td>1978</td>
<td>15246.5</td>
<td>11878.0</td>
<td>9262.0</td>
<td>8822.0</td>
<td>0.46</td>
<td>2450.1</td>
</tr>
<tr>
<td>1979</td>
<td>15037.9</td>
<td>11648.6</td>
<td>8462.0</td>
<td>9240.5</td>
<td>0.46</td>
<td>2829.3</td>
</tr>
<tr>
<td>1980</td>
<td>15209.2</td>
<td>11630.1</td>
<td>8227.3</td>
<td>9565.8</td>
<td>0.60</td>
<td>3726.5</td>
</tr>
<tr>
<td>1981</td>
<td>15335.1</td>
<td>11149.7</td>
<td>7978.8</td>
<td>12555.0</td>
<td>0.61</td>
<td>3829.3</td>
</tr>
<tr>
<td>1982</td>
<td>14804.4</td>
<td>11211.2</td>
<td>7796.1</td>
<td>8414.2</td>
<td>0.42</td>
<td>4104.6</td>
</tr>
<tr>
<td>1983</td>
<td>14269.8</td>
<td>11935.9</td>
<td>8920.7</td>
<td>3601.1</td>
<td>0.54</td>
<td>3264.7</td>
</tr>
<tr>
<td>1984</td>
<td>12790.0</td>
<td>10157.0</td>
<td>8277.4</td>
<td>6906.5</td>
<td>0.98</td>
<td>674.1</td>
</tr>
<tr>
<td>1985</td>
<td>9456.7</td>
<td>6919.0</td>
<td>5020.5</td>
<td>6487.6</td>
<td>0.87</td>
<td>1268.4</td>
</tr>
<tr>
<td>1986</td>
<td>8687.7</td>
<td>6097.6</td>
<td>4125.9</td>
<td>7678.8</td>
<td>0.62</td>
<td>2248.2</td>
</tr>
<tr>
<td>1987</td>
<td>8454.3</td>
<td>6388.6</td>
<td>4587.0</td>
<td>3707.5</td>
<td>0.95</td>
<td>2156.4</td>
</tr>
<tr>
<td>1988</td>
<td>7839.5</td>
<td>5186.5</td>
<td>4074.5</td>
<td>8755.6</td>
<td>1.21</td>
<td>1789.8</td>
</tr>
<tr>
<td>1989</td>
<td>6515.1</td>
<td>4390.5</td>
<td>3005.3</td>
<td>4044.8</td>
<td>1.09</td>
<td>2009.5</td>
</tr>
<tr>
<td>1990</td>
<td>5615.1</td>
<td>4078.0</td>
<td>3123.8</td>
<td>3193.4</td>
<td>1.41</td>
<td>1072.6</td>
</tr>
<tr>
<td>1991</td>
<td>4503.3</td>
<td>2795.5</td>
<td>2243.4</td>
<td>5287.0</td>
<td>1.41</td>
<td>1258.1</td>
</tr>
<tr>
<td>1992</td>
<td>3886.7</td>
<td>2467.1</td>
<td>1673.4</td>
<td>3139.4</td>
<td>1.20</td>
<td>2023.7</td>
</tr>
<tr>
<td>1993</td>
<td>4155.9</td>
<td>2500.1</td>
<td>1848.1</td>
<td>5422.7</td>
<td>1.17</td>
<td>1679.5</td>
</tr>
<tr>
<td>1994</td>
<td>4602.5</td>
<td>2695.8</td>
<td>1844.5</td>
<td>5759.9</td>
<td>0.70</td>
<td>1673.7</td>
</tr>
<tr>
<td>1995</td>
<td>6035.0</td>
<td>3685.5</td>
<td>2546.2</td>
<td>7742.6</td>
<td>0.39</td>
<td>2048.7</td>
</tr>
<tr>
<td>1996</td>
<td>7545.3</td>
<td>5263.1</td>
<td>3834.9</td>
<td>5617.8</td>
<td>0.56</td>
<td>2091.1</td>
</tr>
<tr>
<td>1997</td>
<td>7745.3</td>
<td>5991.2</td>
<td>4590.0</td>
<td>4029.4</td>
<td>0.47</td>
<td>1756.1</td>
</tr>
<tr>
<td>1998</td>
<td>8877.9</td>
<td>6276.4</td>
<td>4916.1</td>
<td>9554.6</td>
<td>0.31</td>
<td>1874.8</td>
</tr>
<tr>
<td>1999</td>
<td>10801.3</td>
<td>7752.0</td>
<td>5455.9</td>
<td>8671.2</td>
<td>0.21</td>
<td>2516.3</td>
</tr>
<tr>
<td>2000</td>
<td>12041.8</td>
<td>9874.0</td>
<td>6930.2</td>
<td>3901.7</td>
<td>0.32</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Georges Bank winter flounder catch biomass (mt) fit for the WIN (A) and WINC (B) models, 1964-2000.

(A) Observed vs Predicted

(B) Observed vs Predicted
Figure 2. Winter flounder fall survey biomass index fit for the WIN (A) and WINC (B) models, 1964-2000

(A) Observed

(B) Observed
Figure 3. Winter flounder spring survey biomass index fit for the WIN (A) and WINC (B) models, 1968-2000

(A)

(B)

Year

Spring survey biomass index (kg/tow * 1000)

Observed

Predicted

Year

Spring survey biomass index (kg/tow * 1000)

Observed

Predicted
Figure 4. Winter flounder Canadian spring survey biomass index fit for the WINC model, 1987-2000
Figure 5. Winter flounder fishery age composition residuals for the WIN model, 1982-2000
Figure 6. Winter flounder fall survey age composition residuals for the WIN model, 1982-2000

Observed minus predicted proportion at age
Figure 7. Winter flounder spring survey age composition residuals for the WIN model, 1982-2000
Figure 8. Winter flounder Canadian spring survey age composition residuals for the WINC model, 1987-2000
Figure 9. Selectivity curves for the WIN model

George Bank winter flounder fishery selectivity

George Bank winter flounder survey selectivity

Fall Survey

Spring Survey
Georges Bank winter flounder recruitment, 1964-2000

Figure 10. Recruitment estimates for the WIN model
Figure 11. Population biomass estimates for the WIN model

Georges Bank winter flounder population biomass (thousand mt), 1964-2000
Figure 12. Spawning biomass estimates for the WIN model

Georges Bank winter flounder spawning biomass (thousand mt), 1964-2000
Figure 13. Fishing mortality estimates for the WIN model

Georges Bank winter flounder fishing mortality (F), 1964-2000

Year

Fully-recruited fishing mortality (year⁻¹)

- F
Figure 14. Stock-recruitment estimates for the WIN model

Georges Bank winter flounder stock-recruitment data, 1964-1999
Figure 15. Surplus production estimates for the WIN model

Georges Bank winter flounder surplus production, 1964-1999

![Graph showing surplus production estimates for the WIN model over the years 1964 to 1999. The x-axis represents the years 1960 to 2000, and the y-axis represents the exploitable biomass increment in mt. The graph shows fluctuations in surplus production over the years.]
Figure 16. Sensitivity of WIN Baseline model to effective sample size of the fishery age composition likelihood component
Appendix. AD Model Builder computer code to fit the WIN model, the input data file, and the standard deviation parameter file.

Computer Code

```plaintext
//WINTER FLOUNDER AGE-STRUCTURED MODEL
//JON BRODZIAK NEFSC OCTOBER 2001
//COMMENT LINES BEGIN WITH "//"
DATA_SECTION
//READ DATA FROM INPUT FILE "WIN.DAT"
init_int styr
init_int endyr
init_int nages
init_int nselages_fish
init_vector catch_bio(styr,endyr)
init_int nobs_fish
init_ivector yrs_fish(1,nobs_fish)
init_vector nsamples_fish(1,nobs_fish)
init_matrix obs_p_fish(1,nobs_fish,1,nages)
init_int nobs_FALL
init_ivector yrs_FALL(1,nobs_FALL)
init_number zfrac_FALL
init_vector obs_FALL(1,nobs_FALL)
init_int nsamples_FALL
init_matrix obs_p_FALL(1,nobs_FALL,1,nages)
init_int nobs_SPR
init_ivector yrs_SPR(1,nobs_SPR)
init_number zfrac_SPR
init_vector obs_SPR(1,nobs_SPR)
init_int nsamples_SPR
init_matrix obs_p_SPR(1,nobs_SPR,1,nages)
init_vector wt(1,nages)
init_number zfrac_spawn
init_vector maturity(1,nages)
init_number lambda_recruitment
init_number lambda_fishery_age
init_number lambda_FALL_age
init_number lambda_biomass_index_FALL
init_number lambda_SPR_age
init_number lambda_biomass_index_SPR
init_number lambda_fishery_sel
init_number lambda_f_penalty
int styr_rec

LOCAL_CALCS
//COMPUTE YEAR OF FIRST RECRUITMENT DEVIATION TO BE ESTIMATED
styr_rec=styr-nages+2;
END_CALCS

INITIALIZATION_SECTION
//PROVIDE INITIAL PARAMETER VALUES
//NATURAL MORTALITY (NOT ESTIMATED)
M 0.20

//MEAN RECRUITMENT) IN THOUSANDS OF FISH
mean_log_rec 8.45

//LOG(MEAN ANNUAL FISHING MORTALITY)
log_avg_fmort -2.5
```

38
//FALL SURVEY INDEX PARAMETERS
qFALL 1.
exp_FALL 1.
log_gamma_FALL -2.
log_beta_FALL 0.
log_a50_FALL 1.5

//SPRING SURVEY INDEX PARAMETERS
qSPR 1.
exp_SPR 1.
log_gamma_SPR -25.
log_beta_SPR 0.
log_a50_SPR 1.5

PARAMETER_SECTION
//DECLARE MODEL PARAMETERS AND VARIABLES
init_bounded_number M(.02,.25,-1)
init_number mean_log_rec(1)
init_bounded_dev_vector rec_dev(styr_rec,endyr,-15,15,3)

init_bounded_number qFALL(.001,1000.,7)
init_bounded_number exp_FALL(25.4,-1)
init_bounded_number log_gamma_FALL(-50.,0.999,6)
init_bounded_number log_beta_FALL(.5,10,6)
init_bounded_number log_a50_FALL(0.,3,6)

init_bounded_number qSPR(.001,1000.,5)
init_bounded_number exp_SPR(25.4,-1)
//FIX log_gamma_SPR at -25 to assume flat-topped curve
init_bounded_number log_gamma_SPR(-50.,0.999,6)
init_bounded_number log_beta_SPR(-50.,10,4)
init_bounded_number log_a50_SPR(0.,3,4)

init_number log_avg_fmort(2)
init_bounded_dev_vector fmort_dev(styr,endyr,-15,15,2)

init_vector log_selcoffs_fish(1,nselages_fish,4)

vector log_sel_fish(1,nages)
vector sel(1,nages)
vector sel_FALL(1,nages)
vector sel_SPR(1,nages)
number avgsel_fish

vector rec_years(styr_rec,endyr)
vector years(styr,endyr)
vector ages(1,nages)

vector totn_FALL(styr,endyr)
vector totn_SPR(styr,endyr)
vector popnbiom(styr,endyr)
sdreport_vector spawnbiom(styr,endyr)
sdreport_vector recruitment(styr,endyr)
vector explbiom(styr,endyr)
vector surplus_production(styr,endyr)
vector pred_FALL(styr,endyr)
vector pred_SPR(styr,endyr)
matrix pred_p_fish(styr,endyr,1,nages)
matrix pred_p_FALL(styr,endyr,1,nages)
matrix pred_p_SPR(styr,endyr,1,nages)
vector pred_catch(styr,endyr)

vector natage_FALL(1,nages)
vector natage_SPR(1,nages)
vector natage_spawn(1,nages)
matrix natage(styr,endyr,1,nages)
matrix catage(styr,endyr,1,nages)
matrix Z(styr,endyr,1,nages)
matrix F(styr,endyr,1,nages)
matrix S(styr,endyr,1,nages)

number beta_FALL
number gamma_FALL
number a50_FALL
number beta_SPR
number gamma_SPR
number a50_SPR

number survival
vector offset(1,4)
number rec_like
number catch_like
vector age_like(1,4)
vector sel_like(1,4)
number fpem
number FALL_like
number SPR_like

number rmse_catch_bio
number rmse_FALL
number rmse_SPR

objective_function_value f

sdreport_number endbiom
sdreport_number depletion_popnbiom
sdreport_number endspawn
sdreport_number depspawn
sdreport_number depopnbiom82
sdreport_number depspawn82
sdreport_vector endN(1,nages)
likeprof_number endF

RUNTIME_SECTION
convergence_criteria 1e-6;

PRELIMINARY_CALCS_SECTION

//SET TIME HORIZON:years
for (int i=styr; i<=endyr; i++)
{
 years(i)=i;
}

//SET RECRUITMENT TIME HORIZON:rec_years
for (i=styr_rec; i<=endyr; i++)
{
 rec_years(i)=i;
}

//SET AGE CLASSES:ages
for (i=1; i<=nages; i++)
{
 ages(i)=i;
}

//RESCALE FALL SURVEY INDEX
obs_FALL*=1000;

//RESCALE SPRING SURVEY INDEX
//CHECK INPUT DATA
cout << "START YEAR: \"<<styr<<endl;
cout << "END YEAR: \"<<endyr<<endl;
cout << "AGE CLASSES: \"<<nages<<endl;
cout << "FISHERY SELECTED AGES: \"<<nselages_fish<<endl;
cout << "CATCH BIOMASS\" << endl;
cout << "FISHERY YEARS\"<<endl;
cout << yrs_fish<< endl;
cout << "FALL SURVEY YEARS\"<<endl;
cout << yrs_FALL<< endl;
cout << "FRACTION OF Z BEFORE FALL SURVEY\"<<endl;
cout << zfrac_FALL<< endl;
cout << "FALL SURVEY INDEX\"<<endl;
cout << obs_FALL<< endl;
cout << "SPRING SURVEY YEARS\"<<endl;
cout << yrs_SPR<< endl;
cout << "FRACTION OF Z BEFORE SPRING SURVEY\"<<endl;
cout << zfrac_SPR<< endl;
cout << "SPRING SURVEY INDEX\"<<endl;
cout << obs_SPR<< endl;
cout << "FISHERY AGE COMPOSITION\"<<endl;
cout << obs_p_fish<< endl;
cout << "FALL SURVEY AGE COMPOSITION\"<<endl;
cout << obs_p_FALL<< endl;
cout << "SPRING SURVEY AGE COMPOSITION\"<<endl;
cout << obs_p_SPR<< endl;
cout << "WEIGHT AT AGE\"<<endl;
cout << wt<< endl;
cout << "FRACTION OF Z BEFORE SPAWNING\"<<endl;
cout << zfrac_spawn<< endl;
cout << "MATURITY AT AGE\"<<endl;
cout << maturity<< endl;
cout << "LAMBDA RECRUITMENT: \"<<lambda_recruitment<<endl;
cout << "LAMBDA FISHERY AGE: \"<<lambda_fishery_age<<endl;
cout << "LAMBDA FALL SURVEY AGE: \"<<lambda_FALL_age<<endl;
cout << "LAMBDA FALL SURVEY INDEX: \"<<lambda_biomass_index_FALL<<endl;
cout << "LAMBDA SPRING SURVEY AGE: \"<<lambda_SPR_age<<endl;
cout << "LAMBDA SPRING SURVEY INDEX: \"<<lambda_biomass_index_SPR<<endl;
cout << "LAMBDA CATCH BIOMASS: \"<<lambda_catch_biomass<<endl;
cout << "LAMBDA FISHERY SELECTIVITY: \"<<lambda_fisheery_sel<<endl;
cout << "LAMBDA F PENALTY: \"<<lambda_f_penalty<<endl;

//COMPUTE OFFSET FOR FISHERY AGE MULTINOMIAL
for (i=1; i <= nobfs; i++)
{
 //CHECK FOR FISHERY AGE DATA IN YEAR i, -99 = MISSING DATA
 if (obs_p_fish(i,1) >= 0.0)
 obs_p_fish(i)=obs_p_fish(i)/sum(obs_p_fish(i));
 for (int j=1; j<=nages; j++)
 {
 if (obs_p_fish(i,j)>0.0)
 {
 offset(1)=nsamples_fish(i)*obs_p_fish(i,j)*log(obs_p_fish(i,j));
 }
 }
}

//COMPUTE OFFSET FOR AUTUMN SURVEY AGE MULTINOMIAL
for (i=1; i <= nobfs; i++)
{
 //CHECK FOR AGE DATA IN YEAR i, -99 = MISSING DATA
}
if (obs_p_FALL(i,1) >= 0.0)
 obs_p_FALL(i)=obs_p_FALL(i)/sum(obs_p_FALL(i));
for (int j=1; j<=nages; j++)
{
 if (obs_p_FALL(i,j)>0.0)
 {
 offset(2)=nsamples_FALL*obs_p_FALL(i,j)*log(obs_p_FALL(i,j));
 }
}
//cout << "FALL SURVEY PROPORTION AT AGE DATA" << endl;
//cout << obs_p_FALL << endl;

//COMPUTE OFFSET FOR SPRING SURVEY AGE MULTINOMIAL
for (i=1; i <= nobs_SPR; i++)
{
 //CHECK FOR AGE DATA IN YEAR i, -99 = MISSING DATA
 if (obs_p_SPR(i,1) >= 0.0)
 obs_p_SPR(i)=obs_p_SPR(i)/sum(obs_p_SPR(i));
 for (int j=1; j<=nages; j++)
 {
 if (obs_p_SPR(i,j)>0.0)
 {
 offset(3)=nsamples_SPR*obs_p_SPR(i,j)*log(obs_p_SPR(i,j));
 }
 }
//cout << "SPRING SURVEY PROPORTION AT AGE DATA" << endl;
//cout << obs_p_SPR << endl;

TOP_OF_MAIN_SECTION
//ALLOCATE SPACE IN READ-WRITE MEMORY
arrmblsize=2000000;
gradient_structure::set_GRADSTACK_BUFFER_SIZE(2000000);
gradient_structure::set_CMPDIF_BUFFER_SIZE(60000000);

PROCEDURE_SECTION
//DO THE FUNCTION CALLS IN SEQUENCE
get_selectivity();
get_mortality();
survival=mfexp(-1.0* M);
get_numbers_at_age();
get_catch_at_age();
evaluate_the_objective_function();

FUNCTION get_selectivity
//FISHERY SELECTIVITY ESTIMATION FOR AGES 1 TO NSELAGES_FISH
//SET AVERAGE TO 1 AND THEN RESCALE SO MAX VALUE=1
for (int j=1;j<=nages_fish;j++)
{
 log_sel_fish(j)=log_selcoffs_fish(j);
}
for (j=nages_fish+1;j<=nages;j++)
{
 log_sel_fish(j)=log_sel_fish(j-1);
}
avgsel_fish=log(mean(mfexp(log_selcoffs_fish)));
log_sel_fish=log(mean(exp(log_sel_fish)));
sel=mfexp(log_sel_fish);
sel/=max(sel);
//cout<<"FISHERY SELECTIVITY"<<endl;
//cout<<sel<<endl;
//cout<<"MAXIMUM VALUE: "<<max(sel)<<endl;

//AUTUMN SURVEY SELECTIVITY ESTIMATION VIA THOMPSON MODEL
beta_FALL=mfexp(log_beta_FALL);
gamma_FALL=mfexp(log_gamma_FALL);
a50_FALL=mfexp(log_a50_FALL);
for (j=1; j<=nages; j++)
{
 sel_FALL(j)=(1./(1.-gamma_FALL))*pow((1.-gamma_FALL)/gamma_FALL,
 gamma_FALL)*(exp(beta_FALL*gamma_FALL*(a50_FALL-
 double(j)))/(1+exp(beta_FALL*(a50_FALL-double(j)))));
}

sel_FALL/=max(sel_FALL);
//cout<<"FALL SURVEY SELECTIVITY"<<endl;
//cout<<sel_FALL<<endl;
//cout<<"MAXIMUM VALUE: "<<max(sel_FALL)<<endl;

//SPRING SURVEY SELECTIVITY ESTIMATION VIA THOMPSON MODEL
beta_SPR=mfexp(log_beta_SPR);
gamma_SPR=mfexp(log_gamma_SPR);
a50_SPR=mfexp(log_a50_SPR);
for (j=1; j<=nages; j++)
{
 sel_SPR(j)=(1./(1.-gamma_SPR))*pow((1.-gamma_SPR)/gamma_SPR,
 gamma_SPR)*(exp(beta_SPR*gamma_SPR*(a50_SPR-
 double(j)))/(1+exp(beta_SPR*(a50_SPR-double(j)))));
}

sel_SPR/=max(sel_SPR);
//cout<<"SPRING SURVEY SELECTIVITY"<<endl;
//cout<<sel_SPR<<endl;
//cout<<"MAXIMUM VALUE: "<<max(sel_SPR)<<endl;

//cout<<"END OF GET SELECTIVITY"<<endl;

FUNCTION get_mortality
//COMPUTE TOTAL MORTALITY BY YEAR AND AGE
//COMPUTE FISHING MORTALITY MATRIX
for (int i=styr;i<=endyr;i++)
{
 for (int j=1;j<=nages;j++)
 {
 F(i,j)=sel(j)*mfexp(log_avg_fmort + fmort_dev(i));
 }
}

//COMPUTE TOTAL MORTALITY MATRIX
Z=F+M;

//COMPUTE SURVIVAL MATRIX
S=mfexp(-1.0*Z);
//cout<<"END OF GET MORTALITY"<<endl;

FUNCTION get_numbers_at_age
//COMPUTE NUMBERS AT AGE MATRIX
int itmp;

//COMPUTE NUMBERS AT AGE IN INITIAL YEAR
for (int j=1;j<nages;j++)
{
 itmp=styr+1-j;
 natage(styr,j)=mfexp(mean_log_rec-M*double(j-1)+rec_dev(itmp));
}
natage(styr,nages)=mfexp(mean_log_rec-M*(nages-1))/
 (1. - survival);

//COMPUTE RECRUITMENT IN SUBSEQUENT YEARS
for (int i=styr+1;i<=endyr;i++)
{

natage(i,1)=mfexp(mean_log_rec+rec_dev(i));

//COMPUTE NUMBERS AT AGES 2 TO PLUS-GROUP VIA FORWARD PROJECTION
for (i=styr;i<endyr;i++)
{
 for (j=2;j<=nages;j++)
 {
 natage(i+1)(j)=natage(i)(j-1)*S(i)(j-1);
 }
 natage(i+1,nages)+=natage(i,nages)*S(i,nages);
}

//COMPUTE VARIABLES DERIVED FROM NUMBERS AT AGE MATRIX
for (i=styr;i<=endyr;i++)
{
 //COMPUTE PREDICTED FALL SURVEY INDEX AND AGE COMPOSITION
 natage_FALL=elem_prod(natage(i),mfexp(-zfrac_FALL*Z(i)));
 totn_FALL(i)=(natage_FALL*sel_FALL);
 pred_FALL(i)=qFALL*pow(natage_FALL*elem_prod(sel_FALL,wt),exp_FALL);
 pred_p_FALL(i)=elem_prod(sel_FALL,natage_FALL)/totn_FALL(i);

 //COMPUTE PREDICTED SPRING SURVEY INDEX AND AGE COMPOSITION
 natage_SPR=elem_prod(natage(i),mfexp(-zfrac_SPR*Z(i)));}
 totn_SPR(i)=(natage_SPR*sel_SPR);
 pred_SPR(i)=qSPR*pow(natage_SPR*elem_prod(sel_SPR,wt),exp_SPR);
 pred_p_SPR(i)=elem_prod(sel_SPR,natage_SPR)/totn_SPR(i);

 //COMPUTE POPULATION AND SPAWNING AND EXPLOITABLE BIOMASS
 popnbiom(i)=natage(i)*wt;
 natage_spawn=elem_prod(natage(i),mfexp(-zfrac_spawn*Z(i)));
 spawnbiom(i)=natage_spawn*elem_prod(maturity,wt);
 explbiom(i)=natage(i)*elem_prod(sel,wt);

 //COMPUTE RECRUITMENT
 recruitment(i)=mfexp(mean_log_rec+rec_dev(i));
}

//COMPUTE ANNUAL SURPLUS PRODUCTION
for (i=styr;i<endyr;i++)
{
 surplus_production(i)=explbiom(i+1)-explbiom(i)+catch_bio(i);
}

//COMPUTE DEPLETION RATIOS FOR POPULATION AND SPAWNING BIOMASS
depletion_popnbiom=popnbiom(endyr)/popnbiom(styr);
depspawn=spawnbiom(endyr)/spawnbiom(styr);
depppopnbiom82=popnbiom(endyr)/popnbiom(1982);
deppspawn82=spawnbiom(endyr)/spawnbiom(1982);

//COMPUTE POPULATION AND SPAWNING BIOMASS IN ENDING YEAR
endbiom=popnbiom(endyr);
endspawn=spawnbiom(endyr);

//COMPUTE F AND NUMBERS AT AGE IN ENDING YEAR
endF=mfexp(log_avg_fmort+fmort_dev(endyr));
endN=natage(endyr);

//cout << "END OF GET NUMBERS AT AGE" << endl;

FUNCTION get_catch_at_age
 //COMPUTE CATCH NUMBERS BY YEAR AND AGE
for (int i=styr; i<=endyr; i++)
{
pred_catch(i)=0.;

// APPLY THE CATCH EQUATION
for (int j = 1 ; j<= nages; j++)
{
 catage(i,j) = natage(i,j)*F(i,j)*(1.-S(i,j))/Z(i,j);
}

// COMPUTE PREDICTED CATCH BIOMASS
pred_catch(i)+=catage(i,j)*wt(j);
}

// COMPUTE PREDICTED FISHERY AGE COMPOSITION
pred_p_fish(i)=catage(i)/sum(catage(i));
}
// cout << "END OF GET CATCH AT AGE" << endl;

FUNCTION evaluate_the_objective_function
// COMPUTE THE MODEL LIKELIHOOD (f)
f=.0;

// DO THIS WHEN RECRUITMENT DEVIATIONS ARE ESTIMATED (PHASE>2)
if (active(rec_dev))
{
 age_like=0.;
 int ii;

 // COMPUTE RECRUITMENT LIKELIHOOD COMPONENT
 rec_like=norm2(rec_dev);
f+=lambda_recruitment*rec_like;

 // COMPUTE AGE COMPOSITION LIKELIHOODS
 // FISHERY COMPONENT
 for (int i=1; i <= nobs_fish; i++)
 {
 ii=yrs_fish(i);
 for (int j=1; j<=nages; j++)
 {
 if (obs_p_fish(i,1) >= 0.0)
 age_like(1)-=nsamples_fish(i)*obs_p_fish(i,j)*log(pred_p_fish(ii,j)+1.e-13);
 // cout << "FISHERY AGE: " << age_like(1) << " " << i << " " <<j<< endl;
 }
 }
 age_like(1)-=offset(1);
 age_like(1)*=lambda_fishery_age;

 // AUTUMN SURVEY COMPONENT
 for (i=1; i <= nobs_FALL; i++)
 {
 ii=yrs_FALL(i);
 for (int j=1; j<=nages; j++)
 {
 if (obs_p_FALL(i,1) >= 0.0)
 age_like(2)-=nsamples_FALL*obs_p_FALL(i,j)*log(pred_p_FALL(ii,j)+1.e-13);
 // cout << "FALL SURVEY AGE: " << age_like(2) << " " << i << " " <<j<< endl;
 }
 }
 age_like(2)-=offset(2);
 age_like(2)*=lambda_FALL_age;

 // SPRING SURVEY COMPONENT
 for (i=1; i <= nobs_SPR; i++)
 {
 ii=yrs_SPR(i);
 for (int j=1; j<=nages; j++)
 {
if (obs_p_SPR(i,1) >= 0.0)
 age_like(3)-=nsamples_SPR*obs_p_SPR(i,j)*log(pred_p_SPR(ii,j)+1.e-13);
//cout << "SPRING SURVEY AGE: " << age_like(3) << " " << i << " " << j << " " << endl;
}
age_like(3)=offset(3);
age_like(3)=lambda_SPR_age;

f+=sum(age_like);
}

//COMPUTE AUTUMN SURVEY INDEX LIKELIHOOD (LOGNORMAL)
FALL_like=norm2(log(obs_FALL+0.001)-log(pred_FALL(yrs_FALL)+0.001));
FALL_like*=0.5*double(size_count(obs_FALL));
f+=lambda_biomass_index_FALL*FALL_like;

//COMPUTE ROOT MEAN SQUARED ERROR FOR FALL SURVEY INDEX FIT
rmse_FALL=norm(log(obs_FALL+0.001)-log(pred_FALL(yrs_FALL)+0.001));
rmse_FALL*=1.0/sqrt(double(size_count(obs_FALL)));

//COMPUTE SPRING SURVEY INDEX LIKELIHOOD (LOGNORMAL)
SPR_like=norm2(log(obs_SPR+0.001)-log(pred_SPR(yrs_SPR)+0.001));
SPR_like*=0.5*double(size_count(obs_SPR));
f+=lambda_biomass_index_SPR*SPR_like;

//COMPUTE ROOT MEAN SQUARED ERROR FOR SPRING SURVEY INDEX FIT
rmse_SPR=norm(log(obs_SPR+0.001)-log(pred_SPR(yrs_SPR)+0.001));
rmse_SPR*=1.0/sqrt(double(size_count(obs_SPR)));

//COMPUTE CATCH BIOMASS LIKELIHOOD
catch_like=norm2(log(catch_bio+0.000001)-log(pred_catch+0.000001));
catch_like*=0.5*double(size_count(catch_bio));
f+=lambda_catch_biomass*catch_like;

//COMPUTE ROOT MEAN SQUARED ERROR FOR CATCH BIOMASS FIT
rmse_catch_bio=norm(log(catch_bio+0.000001)-log(pred_catch+0.000001));
rmse_catch_bio*=1.0/sqrt(double(size_count(catch_bio)));

//COMPUTE SELECTIVITY LIKELIHOODS
//FISHERY COMPONENT
sel_like(1)=norm2(first_difference(first_difference(log_sel_fish)));
f+=lambda_fishery_sel*square(avgsel_fish);

//SURVEY COMPONENTS (PLACEHOLDERS FOR FUTURE USE)
sel_like(2)=0.;
sel_like(3)=0.;
sel_like(4)=0.;
f+=lambda_fishery_sel*sel_like(1);

//COMPUTE F PENALTY LIKELIHOOD CONSTRAINT
//HIGH PENALTY IF ESTIMATION PHASE < 3
//LOW PENALTY IF ESTIMATION PHASE >= 3
if (current_phase()<3)
 {
 fpen=10.*norm2(mfexp(fmort_dev+log_avg_fmort)-.1);
 }
else
 {
 fpen=0.001*norm2(mfexp(fmort_dev+log_avg_fmort)-.1);
 }
if (active(fmort_dev))
 {
 fpen+=norm2(fmort_dev);
 }
f+=lambda_f_penalty*fpen;
REPORT_SECTION
//OUTPUT RESULTS TO FILE "WIN.REP"

report << "Winter Flounder Age-structured Model WIN" << endl;
report << "Estimated Numbers (000s) of Fish at Age (year,age)" << endl;
report << natage << endl;
report << "Estimated Fishing Mortality (year,age)" << endl;
report << F << endl;

report << "Observed FALL SURVEY Biomass Index (year)" << endl;
report << yrs_FALL << endl;
report << obs_FALL << endl;
report << "Predicted FALL SURVEY Biomass Index (year)" << endl;
report << pred_FALL << endl;
report << "Residuals for FALL SURVEY Biomass Index (year)" << endl;
report << obs_FALL - pred_FALL(yrs_FALL) << endl;

report << "Observed SPRING SURVEY Biomass Index (year)" << endl;
report << yrs_SPR << endl;
report << obs_SPR << endl;
report << "Predicted SPRING SURVEY Biomass Index (year)" << endl;
report << pred_SPR << endl;
report << "Residuals for SPRING SURVEY Biomass Index (year)" << endl;
report << obs_SPR - pred_SPR(yrs_SPR) << endl;

report << "Fishery age composition effective sample size (year)" << endl;
report << yrs_fish << endl;
report << nsamples_fish << endl;

report << "Observed Fishery Proportion at Age (year,age)" << endl;
report << obs_p_fish << endl;
report << "Predicted Fishery Proportion at Age (year,age)" << endl;
report << pred_p_fish << endl;

report << "Observed FALL SURVEY Proportion at Age (year,age)" << endl;
report << obs_p_FALL<< endl;
report << "Predicted FALL SURVEY Proportion at Age (year,age)" << endl;
report << pred_p_FALL<< endl;

report << "Observed SPRING SURVEY Proportion at Age (year,age)" << endl;
report << obs_p_SPR<< endl;
report << "Predicted SPRING SURVEY Proportion at Age (year,age)" << endl;
report << pred_p_SPR<< endl;

report << "Population Biomass (mt) by Year"<< endl;
report << years << endl;
report << popnbim << endl;
report << "Population Biomass in 2000" << endl;
report << endbiom << endl;
report << "Depletion ratio in 2000 for population biomass" << endl;
report << deppopnbim82 << endl;

report << "Spawning Biomass (mt) by Year" << endl;
report << years << endl;
report << spawnbiom << endl;
report << "Spawning Biomass in 2000" << endl;
report << endspawn << endl;
report << "Depletion ratio in 2000 for spawning biomass" << endl;
report << depspawn << endl;
report << "Depletion ratio in 2000 relative to 1982 population biomass" << endl;
report << depspawn82 << endl;
report << "Exploitable Biomass (mt) by Year" << endl;
report << years << endl;
report << explbiom << endl;

report << "Population numbers at age (thousands) in 2000" << endl;
report << ages << endl;
report << endN << endl;

report << "Mean Recruitment (thousands of age-1 recruits)" << endl;
report << mfexp(mean_log_rec) << endl;

report << "Recruitment (thousands of age-1 recruits) by Year" << endl;
report << rec_years << endl;
report << mfexp(mean_log_rec+rec_dev) << endl;

report << "Observed Catch Biomass (mt) by Year" << endl;
report << years << endl;
report << catch_bio << endl;

report << "Predicted Catch Biomass (mt) by Year" << endl;
report << pred_catch << endl;
report << catch_bio - pred_catch << endl;

report << "Annual Surplus Production (mt)" << endl;
report << surplus_production << endl;

report << "Estimated Average Annual Fishing Mortality by Year" << endl;
report << years << endl;
report << mfexp(log_avg_fmort+fmort_dev) << endl;
report << "Fishing Mortality in 2000" << endl;
report << endF << endl;

report << "Fishery Selectivity by Age" << endl;
report << ages << endl;
report << sel << endl;

report << "FALL SURVEY Selectivity by Age" << endl;
report << ages << endl;
report << sel_FALL << endl;

report << "SPRING SURVEY Selectivity by Age" << endl;
report << ages << endl;
report << sel_SPR << endl;

report << "OBJECTIVE FUNCTION VALUE: " << f << endl;

report << "LIKELIHOOD EMPHASIS FACTORS" << endl;
report << "RECRUITMENT::FISHERY AGE::FALL SURVEY AGE::SPRING SURVEY AGE::F PENALTY" << endl;
report << lambda_recruitment << " " << lambda_fishery_age << " " << lambda_FALL_age << " " << lambda_SPR_age << " " << lambda_f_penalty << endl;
report << "FISHERY SELECTIVITY::CATCH BIOMASS::FALL SURVEY INDEX::SPRING SURVEY INDEX" << endl;
report << lambda_fishery_sel << " " << lambda_catch_biomass << " " << lambda_biomass_index_FALL << " " << lambda_biomass_index_SPR << endl;

report << "LIKELIHOOD COMPONENTS" << endl;
report << "RECRUITMENT::FISHERY AGE::FALL SURVEY AGE::SPRING SURVEY AGE::F PENALTY" << endl;
report << rec_like << " " << age_like << " " << fpen << endl;
report << "FISHERY SELECTIVITY::CATCH BIOMASS::FALL SURVEY INDEX::SPRING SURVEY INDEX" << endl;
report << sel_like(1)+square(avsell_fish) << " " << catch_like << " " << FALL_like << " " << SPR_like << endl;

report << "ROOT MEAN SQUARE ERRORS" << endl;
report << "CATCH BIOMASS: " << rmse_catch_bio << endl;
report << "FALL SURVEY INDEX: " << rmse_FALL << endl;
report << "SPRING SURVEY INDEX: " << rmse_SPR << endl;
Input Data File

- **# Styr endyr**
 1964 2000
- **# Number of age classes**
 7
- **# Number of age classes for selectivity estimation**
 6
- **# Catch biomass: 1964 to 2000, n = 37**
 1517 1687 2197 2349 1999 2518 2716 4183 4512 2976 2218 2937 1893 3594 3250 3064 3975 4012 2980 3908 3931 2163 1787 2669 2859 1891 1953 1828 1849 1683 972 760 1336 1430 1335 1042 1839
- **# Number years of fishery age data 1982-2000**
 19
- **# Years of age fishery data**
- **# Number of age samples in fishery (nsamples_fish)**
 200 200 200 200 200 200 200 200 200 200 100 100 100 100 100 50 50 100
- **# Fishery age composition data 1 2 3 4 5 6 7+**
 0.00000 0.08486 0.41064 0.25206 0.12279 0.06206 0.06759
 0.0157 0.12224 0.45068 0.22582 0.08562 0.03200 0.08208
 0.0000 0.05432 0.10992 0.26437 0.27156 0.12245 0.17738
 0.00647 0.26544 0.22862 0.26775 0.16188 0.03678 0.03306
 0.0000 0.24850 0.49630 0.08792 0.08545 0.04886 0.03297
 0.0000 0.30680 0.39872 0.21318 0.03159 0.02101 0.02870
 0.0000 0.17289 0.57407 0.17440 0.04079 0.01854 0.01931
 0.0000 0.40298 0.35663 0.14864 0.04296 0.03114 0.01766
 0.0000 0.09098 0.62677 0.20613 0.05092 0.01404 0.00515
 0.0000 0.19447 0.41678 0.31196 0.04457 0.01240 0.01982
 0.0000 0.27448 0.26059 0.25070 0.16133 0.03178 0.02113
 0.01507 0.12209 0.46449 0.18316 0.12986 0.06627 0.01906
 0.0000 0.34688 0.37904 0.16016 0.04382 0.03691 0.03320
 0.17432 0.44893 0.17637 0.12455 0.04998 0.01249 0.01335
 0.0000 0.39007 0.30046 0.12727 0.08299 0.05508 0.04412
 0.0000 0.20124 0.46752 0.24724 0.05527 0.01459 0.01413
 0.0000 0.04938 0.62445 0.27636 0.03345 0.00860 0.00418
 0.01678 0.31642 0.42977 0.14492 0.07181 0.01608 0.00423
 0.0000 0.16969 0.44941 0.16627 0.10002 0.07469 0.03991
- **# Number of years of FALL SURVEY data 1964-2000**
 37
- **# Years of FALL SURVEY data**
- **# Fraction of Z Prior to FALL SURVEY (fraction of year)**
 0.75
- **# Untransformed FALL SURVEY biomass index**
 1.822 2.05 5.655 2.074 1.072 2.385 6.49 1.259 1.58 1.195 1.464 2.061 3.925 3.992 3.1 3.829 1.865 2.434 2.692 2.363 2.445 1.119 2.178 0.889 1.273 1.051 0.346 0.136 0.384 0.663 0.578 1.337 1.756 1.534 1.565 2.641 2.66
- **# Number of age samples in FALL SURVEY (nsamples_FALL)**
 100
- **# FALL SURVEY age composition data**
|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|

Number of years of SPRING SURVEY data 1968-2000
33

SPRING SURVEY years

Fraction of Z Prior to SPRING SURVEY (fraction of year)
0.25

SPRING SURVEY biomass index
3.749 1.523 7.111 5.604 2.65 1.214 1.247 1.648 0.757 1.573 1.319 0.898
0.57 0.578 1.489 1.504 1.192 0.722 3.479 3.693

Number of age samples in SPRING SURVEY (nsamples_SPR)
100

SPRING SURVEY age composition data
-99 0.03256445 0.348646378 0.170123409 0.26361698 0.07734057 0.066227305
0.041480907 0.00312664 0.122095306 0.372834492 0.188206379 0.07976407 0.08290808
0.151465033 0.00636204 0.025637641 0.3457253 0.277974336 0.082880076 0.098669272
0.162750172 0.0 0.482292237 0.161910718 0.163787038 0.103484221 0.057488338 0.031037448
0.125667782 0.33042089 0.368865146 0.057866094 0.07983424 0.037345849 0
<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Value 1</th>
<th>Std Dev 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mean_log_rec</td>
<td>8.6215e+00</td>
<td>1.7002e-02</td>
</tr>
<tr>
<td>2</td>
<td>rec_dev</td>
<td>-8.2050e-01</td>
<td>1.6275e-01</td>
</tr>
<tr>
<td>3</td>
<td>rec_dev</td>
<td>-1.2486e+00</td>
<td>1.3983e-01</td>
</tr>
<tr>
<td>4</td>
<td>rec_dev</td>
<td>-1.0944e+00</td>
<td>1.5023e-01</td>
</tr>
<tr>
<td>5</td>
<td>rec_dev</td>
<td>7.4126e-01</td>
<td>6.7549e-02</td>
</tr>
<tr>
<td>6</td>
<td>rec_dev</td>
<td>-8.4282e-01</td>
<td>1.6241e-01</td>
</tr>
<tr>
<td>7</td>
<td>rec_dev</td>
<td>-1.3451e+00</td>
<td>1.4344e-01</td>
</tr>
<tr>
<td>8</td>
<td>rec_dev</td>
<td>-9.8949e-01</td>
<td>1.5730e-01</td>
</tr>
<tr>
<td>9</td>
<td>rec_dev</td>
<td>1.0137e+00</td>
<td>6.1918e-02</td>
</tr>
<tr>
<td>10</td>
<td>rec_dev</td>
<td>-5.8837e-01</td>
<td>1.7445e-01</td>
</tr>
<tr>
<td>11</td>
<td>rec_dev</td>
<td>-2.1967e+01</td>
<td>1.7382e-01</td>
</tr>
<tr>
<td>12</td>
<td>rec_dev</td>
<td>-1.4790e+01</td>
<td>1.9466e-01</td>
</tr>
<tr>
<td>13</td>
<td>rec_dev</td>
<td>5.0998e-01</td>
<td>1.8554e-01</td>
</tr>
<tr>
<td>14</td>
<td>rec_dev</td>
<td>7.2459e-02</td>
<td>2.1847e-01</td>
</tr>
</tbody>
</table>

Standard Deviation Parameter File
<table>
<thead>
<tr>
<th>rec_dev</th>
<th>1.0505e+00</th>
<th>1.0822e-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>rec_dev</td>
<td>1.0539e+00</td>
<td>2.0795e-01</td>
</tr>
<tr>
<td>rec_dev</td>
<td>1.1865e+00</td>
<td>9.6898e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>-2.2321e-01</td>
<td>1.9630e-01</td>
</tr>
<tr>
<td>rec_dev</td>
<td>5.1868e-01</td>
<td>1.2550e-01</td>
</tr>
<tr>
<td>rec_dev</td>
<td>4.6350e-01</td>
<td>1.0412e-01</td>
</tr>
<tr>
<td>rec_dev</td>
<td>5.0984e-01</td>
<td>7.4753e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>5.4443e-01</td>
<td>5.7669e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>8.1636e-01</td>
<td>4.9546e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>4.1616e-01</td>
<td>5.8773e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>-3.2533e-01</td>
<td>7.1735e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>2.1871e-01</td>
<td>4.9439e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>1.5614e-01</td>
<td>5.2478e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>3.2470e-01</td>
<td>5.1051e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>-4.0341e-01</td>
<td>6.2112e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>4.5593e-01</td>
<td>4.3474e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>-3.1633e-01</td>
<td>5.6364e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>-5.2660e-01</td>
<td>6.0753e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>-4.8512e-02</td>
<td>4.7871e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>-5.6973e-01</td>
<td>6.3774e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>-2.3163e-02</td>
<td>4.8388e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>3.7160e-02</td>
<td>5.0147e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>3.3298e-01</td>
<td>4.5074e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>1.2184e-02</td>
<td>5.5837e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>-3.2015e-01</td>
<td>8.0130e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>5.4326e-01</td>
<td>7.4621e-02</td>
</tr>
<tr>
<td>rec_dev</td>
<td>4.4625e-01</td>
<td>1.1027e-01</td>
</tr>
<tr>
<td>rec_dev</td>
<td>-3.5233e-01</td>
<td>1.8716e-01</td>
</tr>
<tr>
<td>qFALL</td>
<td>7.8547e-01</td>
<td>3.8040e-02</td>
</tr>
<tr>
<td>log_gamma_FALL</td>
<td>-1.8483e-01</td>
<td>1.0644e-02</td>
</tr>
<tr>
<td>log_beta_FALL</td>
<td>1.2829e+00</td>
<td>4.4374e-02</td>
</tr>
<tr>
<td>log_a50_FALL</td>
<td>1.7234e+00</td>
<td>7.0717e-03</td>
</tr>
<tr>
<td>qSPR</td>
<td>3.3045e-01</td>
<td>1.2884e-02</td>
</tr>
<tr>
<td>log_beta_SPR</td>
<td>9.6575e-01</td>
<td>5.9038e-02</td>
</tr>
<tr>
<td>log_a50_SPR</td>
<td>7.0653e-01</td>
<td>2.6172e-02</td>
</tr>
<tr>
<td>log_avg_fmort</td>
<td>-6.4774e-01</td>
<td>4.0836e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>-1.3730e+00</td>
<td>6.4691e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>-1.2356e+00</td>
<td>5.9495e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>-7.6300e-01</td>
<td>6.2047e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>-3.7726e-01</td>
<td>6.8532e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>-7.5135e-01</td>
<td>5.7105e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>-6.3439e-01</td>
<td>5.2751e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>-4.1164e-01</td>
<td>5.6960e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>2.7401e-01</td>
<td>6.3205e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>5.1091e-01</td>
<td>5.6296e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>4.1293e-01</td>
<td>6.1328e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>-3.0238e-02</td>
<td>5.9496e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>3.7326e-02</td>
<td>5.7395e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>-4.9396e-01</td>
<td>5.9352e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>-1.4176e-01</td>
<td>5.0880e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>-1.2949e-01</td>
<td>5.4191e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>-1.2996e-01</td>
<td>5.4273e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>1.3864e-01</td>
<td>4.9948e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>1.4762e-01</td>
<td>4.7535e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>-2.1702e-01</td>
<td>4.8527e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>3.4252e-02</td>
<td>4.8676e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>6.2844e-01</td>
<td>4.6381e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>5.1043e-01</td>
<td>5.3372e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>1.7459e-01</td>
<td>5.2940e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>5.9198e-01</td>
<td>5.0505e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>8.3680e-01</td>
<td>4.6599e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>7.3242e-01</td>
<td>5.1137e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>9.8974e-01</td>
<td>4.7055e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>9.9438e-01</td>
<td>4.6675e-02</td>
</tr>
<tr>
<td>fmort_dev</td>
<td>8.2763e-01</td>
<td>4.6682e-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>81</td>
<td>fmort_dev</td>
<td>8.0826e-01</td>
</tr>
<tr>
<td>82</td>
<td>fmort_dev</td>
<td>2.9701e-01</td>
</tr>
<tr>
<td>83</td>
<td>fmort_dev</td>
<td>-2.9966e-01</td>
</tr>
<tr>
<td>84</td>
<td>fmort_dev</td>
<td>6.5725e-02</td>
</tr>
<tr>
<td>85</td>
<td>fmort_dev</td>
<td>-9.7817e-02</td>
</tr>
<tr>
<td>86</td>
<td>fmort_dev</td>
<td>-5.2763e-01</td>
</tr>
<tr>
<td>87</td>
<td>fmort_dev</td>
<td>-9.0487e-02</td>
</tr>
<tr>
<td>88</td>
<td>log_selcoffs_fish</td>
<td>-3.7076e+00</td>
</tr>
<tr>
<td>89</td>
<td>log_selcoffs_fish</td>
<td>-1.0016e+00</td>
</tr>
<tr>
<td>90</td>
<td>log_selcoffs_fish</td>
<td>2.7917e-01</td>
</tr>
<tr>
<td>91</td>
<td>log_selcoffs_fish</td>
<td>5.7593e-01</td>
</tr>
<tr>
<td>92</td>
<td>log_selcoffs_fish</td>
<td>4.1973e-01</td>
</tr>
<tr>
<td>93</td>
<td>log_selcoffs_fish</td>
<td>-1.4280e-02</td>
</tr>
<tr>
<td>94</td>
<td>spawnbiom</td>
<td>2.1676e+04</td>
</tr>
<tr>
<td>95</td>
<td>spawnbiom</td>
<td>1.8943e+04</td>
</tr>
<tr>
<td>96</td>
<td>spawnbiom</td>
<td>1.6296e+04</td>
</tr>
<tr>
<td>97</td>
<td>spawnbiom</td>
<td>1.5627e+04</td>
</tr>
<tr>
<td>98</td>
<td>spawnbiom</td>
<td>1.4772e+04</td>
</tr>
<tr>
<td>99</td>
<td>spawnbiom</td>
<td>1.3455e+04</td>
</tr>
<tr>
<td>100</td>
<td>spawnbiom</td>
<td>1.2154e+04</td>
</tr>
<tr>
<td>101</td>
<td>spawnbiom</td>
<td>1.1504e+04</td>
</tr>
<tr>
<td>102</td>
<td>spawnbiom</td>
<td>9.8498e+03</td>
</tr>
<tr>
<td>103</td>
<td>spawnbiom</td>
<td>9.1607e+03</td>
</tr>
<tr>
<td>104</td>
<td>spawnbiom</td>
<td>9.0487e+03</td>
</tr>
<tr>
<td>105</td>
<td>spawnbiom</td>
<td>8.8685e+03</td>
</tr>
<tr>
<td>106</td>
<td>spawnbiom</td>
<td>1.0359e+04</td>
</tr>
<tr>
<td>107</td>
<td>spawnbiom</td>
<td>1.2052e+04</td>
</tr>
<tr>
<td>108</td>
<td>spawnbiom</td>
<td>1.1878e+04</td>
</tr>
<tr>
<td>109</td>
<td>spawnbiom</td>
<td>1.1649e+04</td>
</tr>
<tr>
<td>110</td>
<td>spawnbiom</td>
<td>1.1630e+04</td>
</tr>
<tr>
<td>111</td>
<td>spawnbiom</td>
<td>1.1150e+04</td>
</tr>
<tr>
<td>112</td>
<td>spawnbiom</td>
<td>1.1211e+04</td>
</tr>
<tr>
<td>113</td>
<td>spawnbiom</td>
<td>1.1936e+04</td>
</tr>
<tr>
<td>114</td>
<td>spawnbiom</td>
<td>1.0157e+04</td>
</tr>
<tr>
<td>115</td>
<td>spawnbiom</td>
<td>6.9190e+03</td>
</tr>
<tr>
<td>116</td>
<td>spawnbiom</td>
<td>6.0976e+03</td>
</tr>
<tr>
<td>117</td>
<td>spawnbiom</td>
<td>6.3685e+03</td>
</tr>
<tr>
<td>118</td>
<td>spawnbiom</td>
<td>5.1865e+03</td>
</tr>
<tr>
<td>119</td>
<td>spawnbiom</td>
<td>4.3905e+03</td>
</tr>
<tr>
<td>120</td>
<td>spawnbiom</td>
<td>4.0780e+03</td>
</tr>
<tr>
<td>121</td>
<td>spawnbiom</td>
<td>2.7955e+03</td>
</tr>
<tr>
<td>122</td>
<td>spawnbiom</td>
<td>2.4671e+03</td>
</tr>
<tr>
<td>123</td>
<td>spawnbiom</td>
<td>2.5001e+03</td>
</tr>
<tr>
<td>124</td>
<td>spawnbiom</td>
<td>2.6958e+03</td>
</tr>
<tr>
<td>125</td>
<td>spawnbiom</td>
<td>3.6855e+03</td>
</tr>
<tr>
<td>126</td>
<td>spawnbiom</td>
<td>5.2631e+03</td>
</tr>
<tr>
<td>127</td>
<td>spawnbiom</td>
<td>5.9912e+03</td>
</tr>
<tr>
<td>128</td>
<td>spawnbiom</td>
<td>6.2764e+03</td>
</tr>
<tr>
<td>129</td>
<td>spawnbiom</td>
<td>7.7520e+03</td>
</tr>
<tr>
<td>130</td>
<td>spawnbiom</td>
<td>7.9870e+03</td>
</tr>
<tr>
<td>131</td>
<td>spawnbiom</td>
<td>8.9605e+03</td>
</tr>
<tr>
<td>132</td>
<td>recruitment</td>
<td>1.4459e+03</td>
</tr>
<tr>
<td>133</td>
<td>recruitment</td>
<td>2.0632e+03</td>
</tr>
<tr>
<td>134</td>
<td>recruitment</td>
<td>1.5293e+03</td>
</tr>
<tr>
<td>135</td>
<td>recruitment</td>
<td>3.0814e+03</td>
</tr>
<tr>
<td>136</td>
<td>recruitment</td>
<td>4.4552e+03</td>
</tr>
<tr>
<td>137</td>
<td>recruitment</td>
<td>4.7868e+03</td>
</tr>
<tr>
<td>138</td>
<td>recruitment</td>
<td>9.2418e+03</td>
</tr>
<tr>
<td>139</td>
<td>recruitment</td>
<td>5.9668e+03</td>
</tr>
<tr>
<td>140</td>
<td>recruitment</td>
<td>1.5867e+04</td>
</tr>
<tr>
<td>141</td>
<td>recruitment</td>
<td>6.3068e+03</td>
</tr>
<tr>
<td>142</td>
<td>recruitment</td>
<td>5.7781e+03</td>
</tr>
<tr>
<td>143</td>
<td>recruitment</td>
<td>1.8179e+04</td>
</tr>
<tr>
<td>144</td>
<td>recruitment</td>
<td>4.4395e+03</td>
</tr>
<tr>
<td>145</td>
<td>recruitment</td>
<td>9.3225e+03</td>
</tr>
<tr>
<td>146</td>
<td>recruitment</td>
<td>8.8220e+03</td>
</tr>
<tr>
<td>Line</td>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>147</td>
<td>recruitment</td>
<td>9.2405e+03</td>
</tr>
<tr>
<td>148</td>
<td>recruitment</td>
<td>9.5657e+03</td>
</tr>
<tr>
<td>149</td>
<td>recruitment</td>
<td>1.2555e+04</td>
</tr>
<tr>
<td>150</td>
<td>recruitment</td>
<td>8.4142e+03</td>
</tr>
<tr>
<td>151</td>
<td>recruitment</td>
<td>3.6011e+03</td>
</tr>
<tr>
<td>152</td>
<td>recruitment</td>
<td>6.9065e+03</td>
</tr>
<tr>
<td>153</td>
<td>recruitment</td>
<td>6.4876e+03</td>
</tr>
<tr>
<td>154</td>
<td>recruitment</td>
<td>7.6788e+03</td>
</tr>
<tr>
<td>155</td>
<td>recruitment</td>
<td>3.7074e+03</td>
</tr>
<tr>
<td>156</td>
<td>recruitment</td>
<td>8.7556e+03</td>
</tr>
<tr>
<td>157</td>
<td>recruitment</td>
<td>4.0448e+03</td>
</tr>
<tr>
<td>158</td>
<td>recruitment</td>
<td>3.1934e+03</td>
</tr>
<tr>
<td>159</td>
<td>recruitment</td>
<td>5.2870e+03</td>
</tr>
<tr>
<td>160</td>
<td>recruitment</td>
<td>3.1394e+03</td>
</tr>
<tr>
<td>161</td>
<td>recruitment</td>
<td>5.4227e+03</td>
</tr>
<tr>
<td>162</td>
<td>recruitment</td>
<td>5.7599e+03</td>
</tr>
<tr>
<td>163</td>
<td>recruitment</td>
<td>7.7426e+03</td>
</tr>
<tr>
<td>164</td>
<td>recruitment</td>
<td>5.6178e+03</td>
</tr>
<tr>
<td>165</td>
<td>recruitment</td>
<td>4.0294e+03</td>
</tr>
<tr>
<td>166</td>
<td>recruitment</td>
<td>9.5546e+03</td>
</tr>
<tr>
<td>167</td>
<td>recruitment</td>
<td>8.6711e+03</td>
</tr>
<tr>
<td>168</td>
<td>recruitment</td>
<td>3.9017e+03</td>
</tr>
<tr>
<td>169</td>
<td>endbiom</td>
<td>1.2042e+04</td>
</tr>
<tr>
<td>170</td>
<td>depletion_popnbiom</td>
<td>5.2754e-01</td>
</tr>
<tr>
<td>171</td>
<td>endspawn</td>
<td>9.8740e+03</td>
</tr>
<tr>
<td>172</td>
<td>depspawn</td>
<td>4.5552e-01</td>
</tr>
<tr>
<td>173</td>
<td>deppopnbiom82</td>
<td>8.1339e-01</td>
</tr>
<tr>
<td>174</td>
<td>depspaw82</td>
<td>8.8073e-01</td>
</tr>
<tr>
<td>175</td>
<td>endN</td>
<td>3.9017e+03</td>
</tr>
<tr>
<td>176</td>
<td>endN</td>
<td>7.0786e+03</td>
</tr>
<tr>
<td>177</td>
<td>endN</td>
<td>6.1046e+03</td>
</tr>
<tr>
<td>178</td>
<td>endN</td>
<td>1.7612e+03</td>
</tr>
<tr>
<td>179</td>
<td>endN</td>
<td>1.4610e+03</td>
</tr>
<tr>
<td>180</td>
<td>endN</td>
<td>1.0872e+03</td>
</tr>
<tr>
<td>181</td>
<td>endN</td>
<td>8.1489e+02</td>
</tr>
<tr>
<td>182</td>
<td>endF</td>
<td>3.1912e-01</td>
</tr>
</tbody>
</table>
The mission of NOAA's National Marine Fisheries Service (NMFS) is "stewardship of living marine resources for the benefit of the nation through their science-based conservation and management and promotion of the health of their environment." As the research arm of the NMFS's Northeast Region, the Northeast Fisheries Science Center (NEFSC) supports the NMFS mission by "planning, developing, and managing multidisciplinary programs of basic and applied research to: 1) better understand the living marine resources (including marine mammals) of the Northwest Atlantic, and the environmental quality essential for their existence and continued productivity; and 2) describe and provide to management, industry, and the public, options for the utilization and conservation of living marine resources and maintenance of environmental quality which are consistent with national and regional goals and needs, and with international commitments." Results of NEFSC research are largely reported in primary scientific media (e.g., anonymously-peer-reviewed scientific journals). However, to assist itself in providing data, information, and advice to its constituents, the NEFSC occasionally releases its results in its own media. Those media are in four categories:

NOAA Technical Memorandum NMFS-NE -- This series is issued irregularly. The series typically includes: data reports of long-term or large area studies; synthesis reports for major resources or habitats; annual reports of assessment or monitoring programs; documentary reports of oceanographic conditions or phenomena; manuals describing field and lab techniques; literature surveys of major resource or habitat topics; findings of task forces or working groups; summary reports of scientific or technical workshops; and indexed and/or annotated bibliographies. All issues receive internal scientific review and most issues receive technical and copy editing.

Northeast Fisheries Science Center Reference Document -- This series is issued irregularly. The series typically includes: data reports on field and lab observations or experiments; progress reports on continuing experiments, monitoring, and assessments; background papers for scientific or technical workshops; and simple bibliographies. Issues receive internal scientific review, but no technical or copy editing.

Fishermen's Report -- This information report is a quick-turnaround report on the distribution and relative abundance of commercial fisheries resources as derived from each of the NEFSC's periodic research vessel surveys of the Northeast's continental shelf. There is no scientific review, nor any technical or copy editing, of this report.

The Shark Tagger -- This newsletter is an annual summary of tagging and recapture data on large pelagic sharks as derived from the NMFS's Cooperative Shark Tagging Program; it also presents information on the biology (movement, growth, reproduction, etc.) of these sharks as subsequently derived from the tagging and recapture data. There is internal scientific review, but no technical or copy editing, of this newsletter.

OBTAINING A COPY: To obtain a copy of a **NOAA Technical Memorandum NMFS-NE** or a **Northeast Fisheries Science Center Reference Document**, or to subscribe to the **Fishermen's Report** or the **The Shark Tagger**, either contact the NEFSC Editorial Office (166 Water St., Woods Hole, MA 02543-1026; 508-495-2228) or consult the NEFSC webpage on "Reports and Publications" (http://www.nefsc.nmfs.gov/nefsc/publications/).

ANY USE OF TRADE OR BRAND NAMES IN ANY NEFSC PUBLICATION OR REPORT DOES NOT IMPLY ENDORSEMENT.