North Pacific Fisheries Data for Productivity Measurement

Presented by
Ron Felthoven
Alaska Fisheries Science Center
Seattle, WA
Characterization of the Federal Fisheries Fleets

- Most vessels target multiple species during the year
- Around 20 different major species groupings of groundfish and shellfish are targeted
- Pollock accounts for a majority of landings (56%)
- Flatfish are second (18%)
- Pacific Cod are third (16%)
- Sablefish, rockfish and Atka mackerel (10%)
 - Halibut not managed by feds
Characterization of the Fleet

• All fisheries are subject to TACs and (typically) bycatch limits for certain species
 • “Sideboard” allocations restrict spillover into other fisheries
 • “Prohibited species” (such as salmon, crab, halibut) bycatch may not be sold -- even though targeted in other fisheries
• Species mix reflects targets and bycatch; varies by trip
• Regulations limit fishers’ options into various fisheries
• We have defined a set of around 20 “fleets” based upon gear, target species and location
Heterogeneous Fleets

- Wide range of vessel sizes, vessel types, gear types, and targeting strategies
 - Vessel sizes range from <50 feet to > 300 feet
 - Catcher vessels and catcher-processors
 - Trawl, hook and line, jig, pot gear
 - The same gear may be used to catch a range of species
 - The same species may be caught by a wide range of gear
- Hard to argue that the entire fleet shares a similar “technology”
- Need to account for different modes of operation when estimating productivity
Management Regimes and Fishing Technologies

- Moratoriums on entry in groundfish and crab
- Followed by LLPs
- Followed by catch share programs
 - Halibut/sablefish ITQs
 - CDQ set asides for Alaska natives
 - AFA co-ops for pollock fishery
 - BSAI crab rationalization program
 - Factory trawlers (flatfish/Amendment 80 fleet)
 - Scallop cooperative
 - Rockfish catch share program
 - Freezer longliner cooperative
- 13 other non-catch share fisheries defined by gear, area or species
Available “Effort” Data

- For all fisheries, we know:
 - Days at sea (estimated by start and delivery dates or from fully observed catcher-processors)
 - Vessel characteristics (length, tonnage, horsepower and more from several sources)

- For subset of fisheries (vessels with observers on board), we also know:
 - Trip length (more accurate)
 - Number of hauls and tow duration (trawl)
 - # hooks per set (longline gear)
 - # pot lifts, soak time (pot gear)
 - Federal observer coverage varies by vessel length:
 - 100% coverage for vessels > 125 feet LOA
 - 30% coverage for vessels > 60 feet & < 125 feet
 - No coverage for vessels < 60 feet

- Crew size data available for many fisheries
 - Catcher-processor vessels since (since 1993)
 - Catcher vessels catching groundfish (since 2009)
 - Catcher vessels catching crab (since 2005)
Revenue and Cost Data

- Revenue data are collected at the point of delivery and are updated annually to capture post-seasonal adjustments.

- Weekly production reports track processing of product form by species for all catcher-processors.

- Comprehensive cost data only collected in 2 fisheries:
 - Crab, and Trawl Catcher-Processor (AM80) fleet;
 - Some of these cost data are problematic.

- PSMFC collects data on fuel prices at various Alaskan ports.
Modeling Considerations

• Two distinct operating modes in our fisheries
 • Regulated common-pool versus rationalized
• Fishing strategies and resulting product quality have changed in rationalized fisheries
 • Fishing rate tends to slow
 • Conserve fuel
 • Smaller tows with trawls to reduce bruising
 • Longer soak time on pot gear
 • Gives appearance of reduced catch/day
 • Can generate confusing productivity measures
• What to do about stock fluctuations in multispecies fisheries prosecuted by several fleets?
Modeling Considerations (cont.)

- How to measure productivity gains that are not about input/output conversion but reflect quality increases and cost savings?
 - Insufficient grade and size detail to track product quality changes
 - Can infer quality changes from price changes; hedonic price or market model is required to source changes
 - Don’t have cost data collection for most of our fisheries
- Physical productivity metrics will miss much of the action and potentially confuse the issue
 - For pre- and post-rationalization comparisons
- Revenue-based models will still miss some of the cost issues
 - Profit may rise even if revenue or catch rates drop as long as cost per unit drops more
Closing Thoughts

- Lack of cost data makes it difficult to estimate models that rely on cost or profit data
- Different types of effort data are available in various fisheries
- Primal productivity metrics may miss catch share impacts
- How should stock fluctuations be considered?
- Alaskan fisheries are diverse and represent a broad range of fishing technologies, incentives, species, and data availability
- Need to specify different models that incorporate the elements unique to each group
 - Can be a daunting and time consuming task
Thanks!!