ATLANTIC WHITE-SIDED DOLPHIN (*Lagenorhynchus acutus*): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

White-sided dolphins are found in temperate and sub-polar waters of the North Atlantic, primarily in continental shelf waters to the 100-m depth contour. The species inhabits waters from central West Greenland to North Carolina (about 35°N) and perhaps as far east as 43°W (Evans 1987; Hamazaki 2002). Distribution of sightings, strandings and incidental takes suggest the possible existence of three stock units: Gulf of Maine, Gulf of St. Lawrence and Labrador Sea stocks (Palka *et al.* 1997). Evidence for a separation between the population in the southern Gulf of Maine and the Gulf of St. Lawrence population comes from a virtual absence of summer sightings along the Atlantic side of Nova Scotia. This was reported in Gaskin (1992), is evident in Smithsonian stranding records, and was obvious during abundance surveys conducted in the summers of 1995 and 1999 which covered waters from Virginia to the Gulf of St. Lawrence, and during the Canadian component of the TNASS survey in the summer of 2007 (Lawson and Gosselin 2009). White-sided dolphins were seen frequently in Gulf of Maine waters and in waters at the mouth of the Gulf of St. Lawrence, but only a few sightings were recorded between these two regions.

The Gulf of Maine population of white-sided dolphins is most common in continental shelf waters from Hudson Canyon (approximately 39°N) on to Georges Bank, and in the Gulf of Maine and lower Bay of Fundy. Sightings data indicate seasonal shifts in distribution (Northridge *et al.* 1997). During January to May, low numbers of white-sided dolphins are found from Georges Bank to Jeffreys Ledge (off New Hampshire), with even lower numbers south of Georges Bank, as documented by a few strandings collected on beaches of Virginia and North Carolina. From June through September, large numbers of white-sided dolphins are found from Georges Bank to the lower Bay of Fundy. From October to December, white-sided dolphins occur at intermediate densities from southern Georges Bank to southern Gulf of Maine (Payne and Heinemann 1990). Sightings south of Georges Bank, particularly around Hudson Canyon, occur year round but at low densities. The Virginia and North Carolina observations appear to represent the southern extent of the species’ range.

Prior to the 1970s, white-sided dolphins in U.S. waters were found primarily offshore on the continental slope, while white-beaked dolphins (*L. albirostris*) were found on the continental shelf. During the 1970s, there was an apparent switch in habitat use between these two species. This shift may have been a result of the decrease in herring and increase in sand lance in the continental shelf waters (Katona *et al.* 1993; Kenney *et al.* 1996).

Figure 1. Distribution of white-sided dolphin sightings from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1998, 1999, 2002, 2004, 2006 and 2007. Isobaths are the 100-m, 1000-m and 4000-m depth contours.
POPOPULATION SIZE
The total number of white-sided dolphins along the eastern U.S. and Canadian Atlantic coast is unknown, although eight estimates from select regions are available from: 1) spring, summer and autumn 1978-1982; 2) July-September 1991-1992; 3) June-July 1993; 4) July-September 1995; 5) July-August 1999; 6) August 2002; 7) June-July 2004; and 8) August 2006. The best available current abundance estimate for white-sided dolphins in the western North Atlantic stock is 63,368 (CV=0.27), an average of the surveys conducted in August within the last 8 years (2002 and 2006). An average is used to account for the large inter-annual variability of the abundance estimates for this species. This variability may be associated with the water temperature and prey patterns.

An abundance estimate of 109,141 (CV=0.30) white-sided dolphins was obtained from an aerial survey conducted in July and August 2002 which covered 7,465 km of trackline over waters from the 1000 m depth contour on the southern edge of Georges Bank to Maine (Table 1). The value of g(0) used for this estimation was derived from the pooled data of 2002, 2004 and 2006 aerial survey data.

An abundance estimate of 2,330 (CV=0.80) white-sided dolphins was obtained from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed 6,180 km of trackline from the 100m depth contour on the southern Georges Bank to the lower Bay of Fundy. The Scotian shelf south of Nova Scotia was not surveyed (Table 1). Shipboard data were collected using the two independent team line transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates (Palka 2005). The value of g(0) was derived from the pooled data of 2002, 2004 and 2006 aerial survey data.

An abundance estimate of 17,594 (CV=0.30) white-sided dolphins was generated from an aerial survey conducted in August 2006 which surveyed 10,676 km of trackline in the region from the 2000m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence. Data were collected using the Hiby circle-back line transect method (Hiby 1999) and analyzed accounting for g(0) and biases due to school size and other potential covariates (Palka 2005). The value of g(0) was derived from the pooled data of 2002, 2004 and 2006 aerial survey data.

An abundance estimate of 5,796 (95%CI=2,681-13,088) white-sided dolphins was generated from the Canadian Trans North Atlantic Sighting Survey (TNASS) in July-August 2007. This aerial survey covered area from northern Labrador to the Scotian Shelf, providing full coverage of the Atlantic Canadian coast. Estimates from this survey have not yet been corrected for availability and perception biases (Lawson and Gosselin 2009).

Please see Appendix IV for earlier abundance estimates. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable and should not be used for PBR determinations.

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_best</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 2002</td>
<td>S. Gulf of Maine to Maine</td>
<td>109,141</td>
<td>0.30</td>
</tr>
<tr>
<td>Jun-Jul 2004</td>
<td>Gulf of Maine to lower Bay of Fundy</td>
<td>2,330</td>
<td>0.80</td>
</tr>
<tr>
<td>Aug 2006</td>
<td>S. Gulf of Maine to upper Bay of Fundy to Gulf of St. Lawrence</td>
<td>17,594</td>
<td>0.30</td>
</tr>
<tr>
<td>July-Aug 2007</td>
<td>N. Labrador to Scotian Shelf</td>
<td>5,796</td>
<td></td>
</tr>
<tr>
<td>2002 and 2006</td>
<td>Average of abundance estimates from 2 August surveys</td>
<td>63,368</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Minimum Population Estimate
The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by (Wade and Angliss 1997). The best estimate of abundance for the western North Atlantic stock of
white-sided dolphins is 63,368 (CV=0.27). The minimum population estimate for these white-sided dolphins is 50,883.

Current Population Trend

A trend analysis has not been conducted for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Life history parameters that could be used to estimate net productivity include: calving interval is 2-3 years; lactation period is 18 months; gestation period is 10-12 months and births occur from May to early August, mainly in June and July; length at birth is 110cm; length at sexual maturity is 230-240 cm for males, and 201-222 cm for females; age at sexual maturity is 8-9 years for males and 6-8 years for females; mean adult length is 250 cm for males and 224 cm for females (Evans 1987); and maximum reported age for males is 22 years and for females, 27 years (Sergeant et al. 1980).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 50,883. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because the CV of the average mortality estimate is less than 0.3 (Wade and Angliss 1997). PBR for the western North Atlantic stock of white-sided dolphin is 509.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Total annual estimated average fishery-related mortality or serious injury to this stock during 2003-2007 was 328 (CV=0.09) white-sided dolphins (Table 2).

Fishery Information

Detailed fishery information is reported in Appendix III

Earlier Interactions

NMFS observers in the Atlantic foreign mackerel fishery reported 44 takes of Atlantic white-sided dolphins incidental to fishing activities in the continental shelf and continental slope waters between March 1977 and December 1991 (Waring et al. 1990; NMFS unpublished data). Of these animals, 96% were taken in the Atlantic mackerel fishery. This total includes 9 documented takes by U.S. vessels involved in joint-venture fishing operations in which U.S. captains transfer their catches to foreign processing vessels. No incidental takes of white-sided dolphins were observed in the Atlantic mackerel JV fishery when it was observed in 1998.

During 1991 to 1998, two white-sided dolphins were observed taken in the Atlantic pelagic drift gillnet fishery, both in 1993. Estimated annual fishery-related mortality and serious injury (CV in parentheses) was 4.4 (.71) in 1989, 6.8 (.71) in 1990, 0.9 (.71) in 1991, 0.8 (.71) in 1992, 2.7 (0.17) in 1993 and 0 in 1994, 1995, 1996, and 1998. There was no fishery during 1997 and the fishery was permanently closed in 1999.

A U.S. joint venture (JV) mid-water (pelagic) trawl fishery was conducted during 2001 on Georges Bank from August to December. No white-sided dolphins were incidentally captured. Two white-sided dolphins were incidentally captured in a single mid-water trawl during foreign fishing operations (TALFF). During TALFF fishing operations all nets fished by the foreign vessel are observed. The total mortality attributed to the Atlantic herring JV and TALFF mid-water trawl fisheries in 2001 was 2 animals.

The mid-Atlantic gillnet fishery occurs year round from New York to North Carolina and has been observed since 1993. One white-sided dolphin was observed taken in this fishery during 1997. None were observed taken in other years. The estimated annual mortality (CV in parentheses) attributed to this fishery was 0 for 1993 to 1996, 45 (0.82) for 1997, 0 for 1998 to 2001, unknown in 2002 and 0 in 2003-2007.

U.S.
Northeast Sink Gillnet

This fishery occurs year round from in the Gulf of Maine, Georges Bank and in southern New England waters. Between 1990 and 2007 there were 56 white-sided dolphin mortalities observed in the Northeast sink gillnet fishery.
Most were taken in waters south of Cape Ann during April to December. In recent years, the majority of the takes have been east and south of Cape Cod. During 2002, one of the takes was off Maine in the fall Mid-coast Closure Area in a pingered net. Estimated annual fishery-related mortalities (CV in parentheses) were 49 (0.46) in 1991, 154 (0.35) in 1992, 205 (0.31) in 1993, 240 (0.51) in 1994, 80 (1.16) in 1995, 114 (0.61) in 1996 (Bisack 1997), 140 (0.61) in 1997, 34 (0.92) in 1998, 69 (0.70) in 1999, 26 (1.00) in 2000, 26 (1.00) in 2001, 30 (0.74) in 2002, 31 (0.93) in 2003, 7 (0.98) in 2004, 59 (0.49) in 2005, 41 (0.71) in 2006, and 0 in 2007. Average annual estimated fishery-related mortality during 2003-2007 was 35 white-sided dolphins per year (0.37; Table 2).

Northeast Bottom Trawl

Fifty mortalities were documented between 1991 and 2007 in the Northeast bottom trawl fishery; 1 during 1992, 0 in 1993, 2 in 1994, 0 in 1995-2001, 1 in 2002, 12 in 2003, 16 in 2004, and 47 in 2005, 4 in 2006 and 1 in 2007. Estimated annual fishery-related mortalities (CV in parentheses) were 110 (0.97) in 1992, 0 in 1993, 182 (0.71) in 1994, 0 in 1995-1999, 137 (0.34) in 2000, 161 (0.34) in 2001, 70 (0.32) in 2002, 216 (0.27) in 2003, 200 (0.30) in 2004, 213 (0.28) in 2005, 164 (0.34) in 2006, and 147 (0.35) in 2007. The 2003-2007 average mortality attributed to the northeast bottom trawl was 188 animals (0.12; Table 2).

Northeast Mid-water Trawl Fishery (Including Pair Trawl)

A white-sided dolphin was observed taken in the single trawl fishery on the northern edge of Georges Bank (off of Massachusetts) during July 2003 in a haul that was targeting (and primarily caught) herring, and 3 white-sided dolphins were taken in 2005 in paired trawls targeting herring. Due to small sample sizes, the bycatch rate model used the 2003 to September 2007 observed mid-water trawl data from paired and single northeast and mid-Atlantic mid-water trawls (Palka, pers. comm.). The model that best fit these data was a Poisson logistic regression model that included latitude and bottom depth as significant explanatory variables, where soak duration was the unit of effort. Estimated annual fishery-related mortalities (CV in parentheses) were unknown in 2001-2002, 24 (0.56) in 2003, 19 (0.58) in 2004, 15 (0.31) in 2005, 19 (0.44) in 2006, and 0 in 2007 (Table 2; Palka pers. comm.). The average annual estimated fishery-related mortality during 2003-2007 was 15 (0.26; Table 2).

Mid-Atlantic Mid-water Trawl Fishery (Including Pair Trawl)

A white-sided dolphin was observed taken in the pair trawl fishery near Hudson Canyon (off New Jersey) during February 2004 in a haul that was targeting mackerel. Five white-sided dolphins were taken in paired trawls targeting mackerel in 2005 and three were taken in 2006. In 2007 one animal was taken in the same haul as a common dolphin. Due to small sample sizes, the bycatch rate model used the 2003 to September 2007 observed mid-water trawl data, including paired and single, and northeast and mid-Atlantic mid-water trawls (Palka, pers. comm.). The model that best fit these data was a Poisson logistic regression model that included latitude and bottom depth as significant explanatory variables, where soak duration was the unit of effort. Estimated annual fishery-related mortalities (CV in parentheses) were unknown in 2001-2002, 51 (0.46) in 2003, 105 (0.38) in 2004, 97 (0.36) in 2005, 54 (0.57) in 2006, and 3.2 (0.70) in 2007 (Table 2; Palka pers. comm.). The average annual estimated fishery-related mortality during 2003-2007 was 62 (0.21; Table 2).

Mid-Atlantic Bottom Trawl Fishery

One white-sided dolphin incidental take was observed in 1997, resulting in a mortality estimate of 161 (CV=1.58) animals. No takes were observed from 1998 through 2004 or in 2006, one take was observed in 2005 and 2 in 2007. Estimated annual fishery-related mortalities (CV in parentheses) were 27 (0.17) in 2000, 27 (0.19) in 2001, 25 (0.17) in 2002, 31 (0.25) in 2003, 26 (0.20) in 2004, 38 (0.29) in 2005, 26 (0.25) in 2006, and 21 (0.24) in 2007. The 2003-2007 average mortality attributed to the mid-Atlantic bottom trawl was 28 animals (0.11; Table 2).
Table 2. Summary of the incidental mortality of white-sided dolphins (Lagenorhynchus acutus) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).

<table>
<thead>
<tr>
<th>Fishery</th>
<th>Years</th>
<th>Vessels</th>
<th>Data Type</th>
<th>Observer Coverage</th>
<th>Observed Mortality</th>
<th>Estimated Mortality</th>
<th>Estimated CVs</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Sink Gillnet</td>
<td>03-07</td>
<td>1993=349, 1998=301</td>
<td>Obs. Data Weighout Trip Logbook</td>
<td>.03, .06, .07, .04, .07</td>
<td>1, 1, 5, 2, 0</td>
<td>31, 7, 59, .41, 0</td>
<td>.93, .98, .49, .71, 0</td>
<td>35 (0.37)</td>
</tr>
<tr>
<td>Northeast Bottom Trawl</td>
<td>03-07</td>
<td>unk</td>
<td>Obs. Data Weighout Trip Logbook</td>
<td>.04, .05, .12, .06, .018</td>
<td>12, 16, 47, 4, 1</td>
<td>216, 200, 213, 164, 147</td>
<td>.27, .30, .28, .34, .35</td>
<td>188 (0.12)</td>
</tr>
<tr>
<td>Northeast Mid-water Trawl - Including Pair Trawl</td>
<td>03-07</td>
<td>28, 22, 25, 25, 7</td>
<td>Obs. Data Weighout Trip Logbook</td>
<td>.031, .126, .199, .031, .08</td>
<td>1, 0.3, 0, 0</td>
<td>24, 19, 15, 19, 0</td>
<td>.56, .58, .31, .44, 0</td>
<td>15 (0.26)</td>
</tr>
<tr>
<td>Mid-Atlantic Mid-water Trawl - Including Pair Trawl</td>
<td>03-07</td>
<td>23, 25, 31, 23, 14</td>
<td>Obs. Data Weighout Trip Logbook</td>
<td>.018, .064, .084, .089, .039</td>
<td>0, 1, 5, 3, 1</td>
<td>51, 105, 97, 54, 3.2</td>
<td>.46, .38, .36, .57, .70</td>
<td>62 (0.21)</td>
</tr>
<tr>
<td>Mid-Atlantic Bottom Trawl</td>
<td>03-07</td>
<td>unk</td>
<td>Obs. Data Weighout Trip Logbook</td>
<td>.01, .03, .03, .03, .03</td>
<td>0, 0, 1, 0, 2</td>
<td>31, 26, 38, 26, 21</td>
<td>.25, .20, .29, .25, .24</td>
<td>28 (0.11)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>328 (0.09)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Observer data (Obs. Data), used to measure bycatch rates, are collected within the Northeast Observer Program. NEFSC collects landings data (Weighout) that are used as a measure of total effort in the Northeast gillnet fishery. Mandatory Vessel Trip Report (VTR) (Trip Logbook) data are used to determine the spatial distribution of fishing effort in the sink gillnet fishery and in the two mid-water trawl fisheries. In addition, the Trip Logbooks are the primary source of the measure of total effort (soak duration) in the mid-water and bottom trawl fisheries.

b Observer coverages for the Northeast sink gillnet are ratios based on metric tons of fish landed. Observer coverages of the trawl fisheries are ratios based on trips.

c A new method was used to develop preliminary estimates of mortality for the mid-Atlantic and Northeast trawl fisheries during 2003-2007. They are a product of bycatch rates predicted by covariates in a model framework and effort reported by commercial fishermen on mandatory vessel logbooks. This method differs from the previous method used to estimate mortality in these fisheries prior to 2000. Therefore, the estimates reported prior to 2000 can not be compared to estimates from 2003 and afterwards.

d After 1998, a weighted bycatch rate was applied to effort from both pingered and non-pingered huals within the stratum where white-sided dolphins were observed taken. During the years 1997, 1999, 2001, 2002, and 2004, respectively, there were 2, 1, 1, 1, and 1 observed white-sided dolphins taken on pingered trips. No takes were observed on pinger trips during 1995, 1996, 1998, 2000, 2005 through 2007.

CANADA

There is little information available that quantifies fishery interactions involving white-sided dolphins in Canadian waters. Two white-sided dolphins were reported caught in groundfish gillnet sets in the Bay of Fundy during 1985 to 1989, and 9 were reported taken in West Greenland between 1964 and 1966 in the now non-operational salmon drift nets (Gaskin 1992). Several (number not specified) were also taken during the 1960's in the now non-operational Newfoundland and Labrador groundfish gillnets. A few (number not specified) were taken in an experimental drift gillnet fishery for salmon off West Greenland which took place from 1965 to 1982 (Read 1994).

Hooker et al. (1997) summarized bycatch data from a Canadian fisheries observer program that placed observers on all foreign fishing vessels operating in Canadian waters, on 25-40% of large Canadian fishing vessels (greater than 100 feet long), and on approximately 5% of smaller Canadian fishing vessels. Bycaught marine mammals were noted as weight in kilos rather than by the numbers of animals caught. Thus the number of individuals was estimated by dividing the total weight per species per trip by the maximum recorded weight of each species. During 1991 through 1996, an estimated 6 white-sided dolphins were observed taken. One animal was from a longline trip south of the Grand Banks (43° 10’N 53° 08’W) in November 1996 and the other 5 were taken in the bottom trawl fishery off Nova Scotia in the Atlantic Ocean; 1 in July 1991, 1 in April 1992, 1 in May 1992, 1 in April 1993, 1 in June 1993 and 0 in 1994 to 1996.

Estimation of small cetacean bycatch for Newfoundland fisheries using data collected during 2001 to 2003
(Benjamins et al. 2007) indicated that, while most of the estimated 862 to 2,228 animals caught were harbor porpoises, a few were white-sided dolphins caught in the Newfoundland nearshore gillnet fishery and offshore monkfish/skate gillnet fisheries.

Herring Weirs

During the last several years, one white-sided dolphin was released alive and unharmed from a herring weir in the Bay of Fundy (A. Westgate, pers. comm.). Due to the formation of a cooperative program between Canadian fishermen and biologists, it is expected that most dolphins and whales will be able to be released alive. Fishery information is available in Appendix III.

Other Mortality

U.S.

During 2003-2007 there were 288 documented Atlantic white-sided dolphin strandings on the US Atlantic coast (Table 3). Twenty-seven of these animals were released alive. Human interaction was indicated in 8 records during this period. Of these, 4 were classified as fishery interactions.

Mass strandings involving up to a hundred or more animals at one time are common for this species. The causes of these strandings are not known. Because such strandings have been known since antiquity, it could be presumed that recent strandings are a normal condition (Gaskin 1992). It is unknown whether human causes, such as fishery interactions and pollution, have increased the number of strandings. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

CANADA

Small numbers of white-sided dolphins have been taken off southwestern Greenland and they have been taken deliberately by shooting elsewhere in Canada (Reeves et al. 1999). The Nova Scotia Stranding Network documented whales and dolphins stranded on the coast of Nova Scotia during 1991 to 1996 (Hooker et al. 1997). Researchers with Dept. of Fisheries and Oceans (DFO), Canada documented strandings on the beaches of Sable Island during 1970 to 1998 (Lucas and Hooker 2000). Sable Island is approximately 170km southeast of mainland Nova Scotia. White-sided dolphins stranded at nearly all times of the year on the mainland and on Sable Island. On the mainland of Nova Scotia, a total of 34 stranded white-sided dolphins was recorded between 1991 and 1996: 2 in 1991 (August and October), 26 in July 1992, 1 in Nov 1993, 2 in 1994 (February and November), 2 in 1995 (April and August) and 2 in 1996 (October and December). During July 1992, 26 white-sided dolphins stranded on the Atlantic side of Cape Breton. Of these, 11 were released alive and the rest were found dead. Among the rest of the Nova Scotia strandings, 1 was found in Minas Basin, 2 near Yarmouth and the rest near Halifax. On Sable Island, 10 stranded white-sided dolphins were documented between 1991 and 1998; all were males, 7 were young males (< 200cm), 1 in January 1993, 5 in March 1993, 1 in August 1995, 1 in December 1996, 1 in April 1997 and 1 in February 1998.

Whales and dolphins stranded between 1997 and 2007 on the coast of Nova Scotia as recorded by the Marine Animal Response Society (MARS) and the Nova Scotia Stranding Network are as follows (Table 3): 0 white-sided dolphins stranded in 1997 to 2000, 3 in September 2001 (released alive), 5 in November 2002 (4 were released alive), 0 in 2003, 19-24 in 2004 (15-20 in October (some (unspecified) were released alive) and 4 in November were released alive), 0 in 2005, and 1 in 2006, and 8-10 in 2007 (all but 3 released alive).

<table>
<thead>
<tr>
<th>Area</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>New Hampshire</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>59</td>
<td>34</td>
<td>60</td>
<td>49</td>
<td>18</td>
<td>220</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Count 2</th>
<th>Count 4</th>
<th>Count 6</th>
<th>Count 11</th>
<th>Count 288</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhode Island</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>New York c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Delaware</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Maryland b</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Virginia b</td>
<td></td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>North Carolina</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL US</td>
<td>66</td>
<td>52</td>
<td>79</td>
<td>66</td>
<td>25</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td>66</td>
<td>54</td>
<td>79</td>
<td>67</td>
<td>34</td>
</tr>
</tbody>
</table>

* Records of mass strandings in Massachusetts during this period are: January 2003 - 4 animals; April 2003 - 28 animals; November 2003 - 4 animals; February 2005 - 8 animals (3 released alive); April 2005 - 6 animals (all released alive); May 2005 strandings of 2 animals (both released alive but one died later); 3 animals (one released alive) and 5 animals; December 2005 - 2 animals; and January 2006 4 separate events involving 23 white-sided dolphins (5 released alive); February 2006 2 events involving 1 and 5 animals; and July 2006 - 9 animals (7 released alive); January 2007 - 9 animals (3 released alive); and September 2007 - 3 animals.

* Strandings that appear to involve a human interaction are: 1 animal from Massachusetts in 2004 was a fishery interaction; and 1 other animal from Massachusetts in 2004 was found with twine obstructing its esophagus. In 2005, 5 animals had signs of human interaction (in Massachusetts, Maryland and Virginia) but in no case was the human interaction able to be determined to be the cause of death. In 2006, 1 animal from Massachusetts was classified as having signs of fishery interaction.

* Records of mass strandings in New York during this period are: September 2007 - 3 animals.

STATUS OF STOCK

The status of white-sided dolphins, relative to OSP, in the U.S. Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. A trend analysis has not been conducted for this species. The total U.S. fishery-related mortality and serious injury for this stock is not less than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. This is a non-strategic stock because the 2003-2007 estimated average annual human related mortality does not exceed PBR.
REFERENCES CITED

