FRASER'S DOLPHIN (*Lagenodelphis hosei*): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Fraser's dolphin is distributed worldwide in tropical waters (Perrin *et al.* 1994). Sightings in the northern Gulf of Mexico occur in oceanic waters (>200 m) (Figure 1). Fraser's dolphins have been observed in the northern Gulf of Mexico during all seasons (Leatherwood *et al.* 1993; Hansen *et al.* 1996; Mullin and Hoggard 2000).

The Gulf of Mexico population is provisionally being considered 1 stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland *et al.* 2001) and the computer program DISTANCE (Thomas *et al.* 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200-m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen *et al.* 1995). Annual cetacean surveys were conducted along a fixed plankton sampling trackline. Survey effort-weighted estimated average abundance of Fraser's dolphins for all surveys combined was 127 (CV= 0.90) (Hansen *et al.* 1995). Similar surveys were conducted during spring from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico. Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate. The estimate of abundance for Fraser’s dolphins in oceanic waters, pooled from 1996 to 2001, is 726 (CV=0.70) (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

During summer 2003 and spring 2004, line-transect surveys dedicated to estimating the abundance of oceanic cetaceans were conducted in the northern Gulf of Mexico. During each year, a grid of uniformly-spaced transect lines from a random start were surveyed from the 200-m isobath to the seaward extent of the U.S. EEZ using NOAA Ship Gordon Gunter (Mullin 2007).

As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations. Because most of the data for estimates prior to 2003 were older than this 8-year limit and due to the different sampling strategies, estimates from the 2003 and 2004 surveys were considered most reliable. The estimate of abundance for Fraser’s dolphins in oceanic waters, pooled from 2003 to 2004, was 0 (Mullin 2007). Because sightings of groups of Fraser’s dolphins have historically been uncommon to rare, it is probable that Fraser’s dolphins were in the northern Gulf of Mexico during 2003 and 2004 but were not encountered. Therefore, the best available abundance estimate for this species in the northern Gulf of Mexico is unknown.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate.
as specified by Wade and Angliss (1997). The best estimate of abundance for Fraser’s dolphins is unknown. The minimum population estimate for the northern Gulf of Mexico for Fraser’s dolphins is unknown.

Current Population Trend

There are insufficient data to determine the population trends for this species. The best available abundance estimate is unknown. The pooled abundance estimate for 1996-2001 of 726 (CV=0.70) and that for 1991-1994 of 127 (CV=0.89) were not significantly different (P>0.05), but due to the precision of the estimates, the power to detect a difference is low. These temporal abundance estimates are difficult to interpret without a Gulf of Mexico-wide understanding of Fraser’s dolphin abundance. The Gulf of Mexico is composed of waters belonging to the U.S., Mexico and Cuba. U.S. waters only comprise about 40% of the entire Gulf of Mexico, and 65% of oceanic waters are south of the U.S. EEZ. The oceanography of the Gulf of Mexico is quite dynamic, and the spatial scale of the Gulf is small relative to the ability of most cetacean species to travel. Studies based on abundance and distribution surveys restricted to U.S. waters are unable to detect temporal shifts in distribution beyond U.S. waters that might account for any changes in abundance.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is unknown. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico Fraser’s dolphin is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of a Fraser’s dolphin during 1998-2006 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007).

Fisheries Information

The level of past or current, direct, human-caused mortality of Fraser’s dolphins in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to Fraser’s dolphins by this fishery.

Other Mortality

There was 1 reported stranding event of Fraser’s dolphins in the Gulf of Mexico during 1999-2006. Ten animals mass stranded in Florida during April 2003. There was no evidence of human interaction for these stranded animals. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

STATUS OF STOCK

The status of Fraser’s dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total level of U.S. Gulf of Mexico fishery-caused mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. Despite an unknown PBR, this is not a strategic stock because there is no documented human-related mortality and serious injury.

REFERENCES CITED

