WOODS HOLE LABORATORY REFERENCE DOCUMENT NO. 84-16

Dynamic Model Processor User's Manual:

A Programming Aid for Easier Simulation Modeling

by

‘William J. Overholtz and John W. Hauser

[ZI APPROVED FOR DISTRIDUTICH

/ﬁ‘i‘ g
{nd L

_APPROVING omcm)

5/Qﬁ/(¢
(DATE)

National Marine Fisheries Service
Northeast Fisheries Center
Woods Hole Laboratory
Woods Hole, Massachusetts 02543

January 1984

dynam/c
dynamic
moage/
model

DIrOCESSOr
Drocessor

user's manual
user's manual

a programming a/d
for eas/er simularion
moaenng

by

william J overholtz
Jjohn w hauser

TABLE OF CONTENTS
Page

Introduction.« ¢« « « ¢ .« . . .
DMP System Philosophy
Features + « ¢ « « o « o « o o)
Procedures for Writing a DMP Model. « « ¢« v 4 o « &
Variable Disc File « ¢« « v v v ¢ ¢ « o« o .
Command File « . .
Model ConsStruction . . .« + & ¢ v v 4 e v v e 4 o o o e e e e e .
DMP Interactive CommandsS. . . « +v & ¢« v & ¢ o o o o « o o o « « o o 13
DMP Commands and Their USeS . v &« v v v v v ¢ 4 v v v v o« o o o o o 14
Backup L e e e e e s e e e e e e e e e e e e e 14
Graph. . . .« L L L e e s e s e e e e e e e s e e e e e 15
MacTo. « v v 4 v i e 16
5o 16
Set. v i e e e e e e e e et e e e e e e e e e e e e e e e e e 17
5 ¢ T 18
SUD. . L e 18
Table. . ¢ @ v i it e 19
An Example of an Actual DMP Run« « « v v v v v « v . . 20
Adapting Other Models ¢ . &« v v 0 v v v v v v v v v u . 26

0 00O B W

The education of a man is never completed until he dies.
--Robert E. Lee

Truth in science can be defined as the working hypothesislbest

suited to open the way to the next better one.

--Konrad Lorenz

Foreword :

This guide to the Dynamic Model Processor (DMP) is designed as
an aid for modelers, to use the system with a minimuﬁ of effort.
The system is programmed in FORThAN 77 and operatés on the Woods
Hole Oceanographic VAX 11/780 computer. The guide can be read by
persons who have little familiarity with Fortran, but anyone who
wishes to use the proéessor as a simulation tool must have a working

knowledge of the language.

Intrdéduction

In the past several years we have witnessed a quantum jump in
.the use of high speed digital computers for selving problems in
almost every pursuit .of science. Astrophysics, agriculture, chemistry,
nuclear engineering, medical research, and paleontology are but a few
of the fields where computers.have an ever increasing rele. The
directions that many of these disciplines are taking.nre being deter-
mined by the computer. The new interest in using computers to solve
problems that were previously too tedious or time limited has spawned
a whole new set of‘ideas'and methods for solving complicated problems.
Computer languages, such as Basic, CoBol, Fortran, APL, énd Pascel have
become available for use by people from,eVefy walk of life. New
professional societies, such as the Society for Computer Simulation,
have'been fofmed. Simulation modeling has made it possible for researchers
to enter into new Tealms of prediction and experimentation that were
oncé impossible. |

Even the biological science§,venerable bastions of Baconian logic
and method are becoming inextrieably tied to the computer for their future.
Ecology, in particular; has benefitted from the array of new analyses,
models, and investigatory methods that are now available because of the
computer. ‘The role of simulation modeling in this field has grown in
leaps and bounds in just a few short years and has taken a place of
importance ;iongside the traditional methods. New professional societies,

such as the Internntional Society for Ecological Modeling,and journals,

_2-

such as Ecological Modeling, are now prominent features of the science.
Numerous textbooks are available on ecoiogical modeling and almost every
major university has courses and at least one faculty member who
considers himself or herself a 'modeler."

This proliferation of models, methods, and strategies is viewed by
many as an impenetrable jungle, and rightly so, for the inexperienced
programmer or the intermittent user. Fortunately, a number of simulation
systems or model processors have become available for the serious and
even part-time modeler to use. These systems strive to simplify the
Vmodeling process so that more time can be spent on the results and relevant
output rather than the programming aspects. Several systems or processors,
notably SIMCON, FLEX, DYNAMO, GASP, and SIMSCRIPT, were designéd to make
life much’easier on the simulation modeler; these can be interfaced with
the basic models to allow control of simulation inputs and outputs. These
systems typically include a command language specific to the particular
processor that allows the modeler to run one or several iterations of a
model and to produce many kinds of outputs, such as graphic displays.

This dociment discusses and highlights a new model pProcessor
developed at the Northeast Fisheries Center. yThis system, known as
Dynamic Model Processor (DMP), was .developed to ;implify the modeling
process for users of the Woods Hole Oceanographic VAX 11/780 computer.
This ﬁsers manual is designed to explain the system and how it works.

It should be of interest to people from different areas of expertise
who use the WHOI computer system. For more details and documentation,

consult the DMP manual prepared by John W. Hauser, 12 September 1983.

-3-
DMP System Philosophy

The goal of the DMP system is to simplify the task of computer
modeling. It is a difficult process to design a comﬁuter program that
not only contains the equations and code for the rules of update for
the model but also contains all the input and output (I/0) and variable
interactions. Anyone who has constructed a simulation model knows
how laborious it can be to construct.a model with all the associated
I/0. Any change that needs to be made usually involves major alterations
of the model code, and. constructing a new model means startiﬁg all over
with a new program; This process can be greatly simplified by standard-
izing the structure of the model and also separating it from the actual
VI/O and interaction procedures.

The basic desighvphilosophy‘of the DMP system is as follows. The
user builds a FORTRAN model according to a specified structure that can
be interfaced with the piocessor (Figure 1). It is unnecessary to include
most READ, WRITE, and FORMAT statements in the model be;ause DMP is
designed to handle 1/0 for the user. Progiamming tabular output, graphics,
timé sequencing and all the other real time activities that are used in
simulations are handled. by DMP. Much of the programming time and design
necessary for interactive simulation is sfent in dealing with these
activities. The DMP syétem is such that simple commands are used to
accomplish the real time interactive changes in variable and graphical

output, etc., that are a necessary part of the process.

-4-

The model processor is separate from the model and as such makes
the simulation process much easier (Figure 1). The system is most
directly applicable in modeling exercises where discrete time is used;
A time step for DMP is one complete cycle through the ;ser's program.
Resolution for the time step could be on a daily, monthly, or yearly
basis, depending on the particular model of interest.

DMP has several features which are useful to the modeler in building
and running a simulation model. These are as follows:

1. A set of easily used and self-explanatory commands

for running the system.

2. Variables can be viewed via the GRAPH or TABLE commands
after a simulation run.

3. System states at any time step can be restored using
the BACKUP command.

4. Batch files can be used to run the simulation for the
modeler or DMP can be run in an interactive mode.

5. MACRO's or sets of DMP commands can be constructed and used
to make simulation runs. In addition, in cases where
multiple runs are desired, iterations of a MACRO can be
easily performed.

6. The user can intervene during any time step to change
variable assignments via the SET command.

7. There are 10 separate subroutine slots available for use by
the programmer to do extra calculations or work using output
from DMP. These subroutines are accessed with SUB1...SUB10
commands at the interactive level.

8. DMP is interfaced with the VAX graphic library during the run
initialization so that referral of graphics plots to the CALCOMP

or other plotter is easily accomplished.

-5-

.Figure 1. Structure of a model built to run on DMP with the
‘ necessary linkages to the system and the VAX plot
library (from Hauser 1983).

User's "Main"
Program
User's subroutine to tlodel : i .,
initialize varizbles Processor Graph].cs Li rary
" , MYS'I‘bEP e :
ser's subroutine DISSPLA
to change variables ;
from one timestep Graphics Library
to next 1
—
1
ADDRESS
o r SU31 J_ an integral
2 : rt of DMF
= part of D
il suz2 =
3
£ SuB3 i
3
L SUB4 —
2]
af SU3S B :
<
3
&l suz6 e
-
= suz? i
S —
al sU38 =
2
i Su39 —
n —
=1 SUs10 -

Procedures for writing a DMP model

As previously mentioned, it is necessary for the DMP user to
construct a FORTRAN model according to a standard design in order to
access the DMP system. Three basic operations are necessary to interface
your model with the DMP; these are as follows:

1. Build a disc file with all the state variables that

you want DMP to recognize and record information about”
over the simulation time intervals you choose.

2. Build a command file that accesses the variable file,
provides §utput work space fér DMP and defines other
necessary information that DMP needs to recognize and run
your model.

3. Construct your model according to the same structure
shown in Figure 2. DMP requires a main program loop that
calls the DMP processor, a subroutine called MYSTEP that
contains the model of interest’and another subroutine

called MYINIT which sets the~initial wvalues- for the model.

Variable Disc File

| The DMP system operates by recording current values for specified
variables at each time step of the model. This is why the variables
are so easily accessed at the end of a simulation for GRAPH, TABLE, or
any of the other DMP commands. It is important for the user to determine
which variables should be accessible and to put these into the variable

disc file (Figure 2). These variables are also put in a common block

-7-

Figure 2. Example structure of a model that includes a main program
' loop, the MYINIT subroutine, the MYSTEP subroutine and the
additional SUB 1-10 subroutines. This model structure is
necessary for access to the DMP system (from Hauser 1983).

IMPLICIT INTEGER (A-Z)

REAL A,B,C,D(20),E(3,4,5)

e A,B8,C,0,E

CALL P ! The main program calls CMP
STCP

2]

SUBRCUTINE #YINIT
IMPLICIT INTEGER (A-Z)
REAL A,B,C,D(20),E(3,4,5)
VMo A,8,C,0,E
Do I=1,3 | Variables initialized in MYINIT if
oo J=1,4 i not previously initializad by the
o k=1,5 ! variable definition file.
E(I,J3,K)=1g@*I+10*J+K
CBD 0
ED 0O
BD Do
RETURN .
END :

SUBRCUTINE MYSTEP
IMPLICIT INTEGER (A-2)
REAL A,B,C,D(29),E(3,4,5)
come A, B,C,D,E .
A=A+l - { MYSTEP contains the rule for changing
2=B+1 { variables fram cne timestep %0 the
c=-1 ! next.
0o I=1,29
C(1)=0(I)+L
END O
RETURN
END

SUBRCUTINE SUBL

LAPLICIT INTEGER (A-Z)

REAL A,B,C,D(2),E(5,4,5) ‘.

comeN A,B8,C,0,E

TCTAL=A+B ! Subroutine to calculate and display
WRITE(6,*) 'A+2=',TCTAL | A+8.

RETURN .

END

SUBRCUTINE SUB2 ‘ | Cunmmy subrcutines
RETURY

=20

SUBRCUTIME SUB3
RETURN

2D

SUBROUTINE SUB4
RETURM

B

SUBRCUTINE SUBS
RETURN

=D

SUBRCUTINE SUB6
RETURN

EXD

SUBROUTINE SUBR7
RETURM

BD

SUBRCUTINE SUES
RETURN

BD

SUBROUTINE SUB9
RETURN

ED

SUBRCUTLIE SUBLG
RETURN

D

-8-

declaration statement in all the DMP subroutines that the user builds

(Figure 2).

Command file

As with many complicated programs where multiple file assignments
are necessary to ruﬁ,programs on the VAX, it is advantageous to set up
a command file to make all the necessary file assignments (Figure 3).
In this case the DMP system requires all the assignments in Figure 3
for execution of the user's model. ‘It would not run, for instance, if
the MACRO library $ ASSIGN was not included in the command file, even

if no MACRO's are to be used in the simulation.

Model Construction

As previously mentioned all programming for DMP must be in. FORTRAN.
The model processor is very'flexible{ and will work on models for
discrete and confinuous time applications. As such, DMP has no numerical
integration subroutines or other internal capabilities for rpnning
standard continuous time integrétors;thesewould all ha?e to'be programmed
into the MYSTEP subroutine. All models and applications of DMP to present
have been discrete time solutions. One loop through the MYSTEP subroutine
is considered a timé step in the DMP system. The level of resolution
could be seconds, days, months, or years; this is entirely up to the
modeler. The processor functions on number of time steps in the RUN mode,

hence it only records the complete cycles through MYSTEP.

-9-

Figure 3. Linking procedure and type of command file necessary for
running a linked version of a model on the DMP system.
All the Fortran and other system assignments are necessary
parts of the command file (from Hauser 1983).

*

LINK mypregram, [344 .FISH]CMP, DISSINT/LIB, DISSPLA/LIB

Create a command file similar to the following:

$ASSIGN myvar.dat FORZJIL | Input file of variable names
SASSIGN myrun.dat FCROD2 ! Record of run, output, can ke input
$ASSIQN mytable.dat FORZE3 | Tabular cutput

SASSIGN mymacro.dat FORIO4 !"User's macro library

$ASSIGN mygraph.dat DISSMETA | Defered plot output

SASSIGN NL: FORZGS | Discards unneeded output

SASSIGN SYSSCCMMAND SYSSINPUT | Accepts replies fram terminal

SRUN myprogram ! Runs the linked mcdel

Execute the command file.

-10-

To build a model and interface it with DMP the modeler must follow
standard procedures.. A standardized model is much easier to understand
and change. The main program loop is really only a call to the DMP
system (Figure 2). It contains little else but a call DMP statement.

The MYINIT subroutine is a variable initialization procedure.
Variables can be initialized in the variable disc file also, but MYINIT
overridei all such assignments. . The advantages of puiting all such
information into one location.are obvious when the user starts to buiid
complicated models. The variables that are in this subroutine and are
held in common can, of course, be changed at any time by using the SET
command. This subroutine can also be used to read outside disc files
that contain initial values for variables.

The final subroutine that the user needs to construct is called
MYSTEP (Figure 2). This subroutine is actually the model or the rules
of update that the user has constructed for the system of interest. In
other words, all the relevant equations, functional relationships,
mechanisms, etc., are programmed in this subroutine. To design efficient,
easily tractable models it is often advantageous to use the MYSTEP
subroutine as a main model loop with several FORTRAN call statements
to subordinate subroutines. This makes for an efficiently designed,
easily understood model that can be read and followed by most people who

are familiar with FORTRAN.

~11-

Figure 4 describes the whole process in a diagram that traces
the different pfocedure§ to follow for building a model, interfacing

it with the DMP system, running it and leaving the processor.

Flow diagram describing the steps necessary for constructing a

Figure 4.

model, interfacing it with DMP, running it and exiting the DMP system,

¢

-12-

y

PROVIDE INTERACTIVE
RESPONSES VIA DMP
COMMAND LANGUAGE

k.

QUTPUTS

. PRODUCE DESIRED

EXIT
OMP

CONSTRUCT MODEL COMPILE omMP
WITH MYINIT Lol MODEL
MYSTEP SUBROUTINES
Y Y
LINK MODEL WITH DISSINT
OMP, VAX PLOT DISSPLA
LIBRARY -
8UILD OMP
COMMAND FILE
EXECUTE
COMMAND
BUILD STATE VARIABLE FILE
DISC FILE
DMP SYSTEM

~13-

DMP Interactive Commands

DMP commands Function

BACKUP Returns the model to a previoﬁs time step
EXIT Terminates the DMP run sequence |

GRAPH - Produces a graph of variables vs time or some

other specified variable
MACRO ' ‘ Enables the user to create a set of DMP

commands that can be executed during a run sequence
RUN Runs thé mbdel by executing subroutine MYSTEP

the requested number of times.

SET . Changes the current value of variables
SHOW : Displays the current value of a variable
SUB : Enables the user to execute additional user -

supplied subroutines

TABLE Produces a table of requested variables over:

a specified time interval.

-14-

DMP Commands and Their Uses

This section summarizes the DMP commands that are available
together with appropriate examples. After each command the system

will, of course, prompt you for information.

BACKUP: This command will return the model state to any previous
time step or restore the model to the initial conditions.
This is very useful if repeated runs are needed or
parameter or variable assignments need to be changed
and the simulation rerun or continued.
(1.): > BACKUP
:> 0 This‘command restores the model state to the starting
point of the simulation run.
(2.): > BACKUP
: > -1 This reinitializes the MYINIT subroutine and restores
the model state to the starting point of the
initialization run. Useful in cases where an outside
function such as RAN, the VAX random number generator,
is used.
(3.): > BACKUP

> 5 This command sets the system state back to timestep 5.

GRAPH:
(1.): >
>

>

>

T >

;>

-15-

This command allows the user to output a graph on a graphics

terminal or to a disc file for future plotting. Several

options exist for producing a plot of one variable vs another

or a time trajectory of a variable.

GRAPH:

Y:

Time:

B:

0:

10:

Initiates GRAPH procedure

Output will be written on a disc file
X axis variable |
Y axis variable

1st time to be plotted

last time to be plotted

This set of DMP commands will produce a graph with time as the

X axis variable and B as the Y axis variable for interval 0-10.

(2.): >

>

'GRAPH:
N:

A:

B:

0:

100:

OQutput will be displayed on the terminal
X axis variable .

Y axis variable

1st time to be plotted

last time to be'plotted

This set of commands will produce a graph with A as the X axis

variable and B as the Y axis variable for the set of data points that

occurred between timesteps O and 100 for these two variables.

=16-

" MACRO: This command allows the user to string together a series of
DMP commands. This can be a very useful feature when a series
of simulations are being run or repetitive command sequences
are being used. This command does nothing itself, but allows

the user to create a MACRO file that runs by typing the MACRO name.

1.
: > MACRO This phases the user with the MACRO mode
P> C Instructs the system to create a MACRO
The user gives the MACRO a name of choice,
> GO . X
in this case GO
: > TABLE Instructs the system to produce a table
:> N The table will be displayed on the terminal
> A Print variable A, B, C in the
T > B table
> C
: > end table command
> 1 1st year on table
P> 10 last year on table
: > 1 interval time
: > X ends the MACRO creation

This series of commands would produce a set of values for variables
A, B, and C, over the interval 1-10 with every timestep printed. By
typing the word GO, this whole series of commands would be executed and
the table would be produced. |
RUN: This command allows the user to run the model for a specified
number of iterations.
(1.): > RUN

: > 10 Run the model for 10 timesteps

-17-

The user in this case has run the model of interest over 10
complete loops. Additional commands are needed to recover information
from this run.

SET: This DMP command allows the user to change parameter or variable
assignments at any stage of the simulation.>‘This command allows
the user to avoid changing the FORTRAN code in’MYSTEP or MYINIT

when parameter changes are required.

'(1.): > SET allows the user to enter set mode
> A variable you wish to change
: > 1.00 value you wish variable to be
> : gets user out of the set mode

The variable A now has the value 1.00.

(2.): > SET gets user into the set mode
1> A change variabie A
> 100 variable A = 100
> exit the set mode
: > RUN run the model for 5 time
i > 5 steps 1
. SET enter set mode again 2
A change variable A again
: > 50 variable A =750
> ~exist set
: > RUN run model for 15 more

> 15 interations

-18-

This sequence of commands illustrates how the user can change a
variable assignment during an actual simulation run. In this case the
variable A was set to 100, 5 iterations run, set to 50 and 15 more

iterations were run. .

SHOW: This command allows the user to display the current value of
a variable. This command is useful for following model results,
debugging the model, or checking that initial values are correct.

{(1.): > SHOW enter the SHOW mode

> A show value of variable A
10.0000° variable A = 10.0
> exit show mode
SUB: This command executes a user supplied subroutine. Often

additional calculations or data analyses, that are separate

from the MYSTEP‘subroutine, are desired. DMP pro?ides the user
with a work area to write up to 10 of those separate user supplied
subroutines. Any unused subroutines must be included in dummy
subroutines (Figure 1). See sample user program (Figure 2)

for more details.

-19-

TABLE: This command allows the user to produce tabular output for
any variable in the variable file. The output can be sent
to the disc or the terminal. The user can send output to

the disc with or without the variable headings.

(1.): > TABLE enter the table command mode

> Y send table to disc
> N no variable headings on disc file
> A include variable A,B,C in file
> B

. . G
> stop entering variables
> 1 | 1st time to be tabulated
>. 20 last time to be tabulated
> 1 time interval

This series of responses produces a table of variables A,B,C, on
the disc without variable headings for time intervals 1-20 with each

interval printed.

(2.): > TAQLE enter TABLE command mode
> N send output to terminal
> A output information for variable A
> stop‘entering variables
> 1 1st time to be printed
> 10 last time to be printed
> 2 time interval

This series of responses would produce a table with variable A on
the terminal for time interval 1-10, but only every other timestep

be printed.

explained,

-20-

An example of an actual DMP model Tun

Now that the structure and function of the processor have been

help the user to better understand the whole process.

(1

some actual examples of using the command language will

In this first example the command file is executed, the SHOW

command is illustrated and a simple table with 3 variables is

produced. The model in use is an actual fisheries management

model that was built to simulate the dynamics of the Georges

Bank haddock stock.

DYNAMIC MCDEL PROCESSCR BEGINS
Do, YOU WANT TQ REPRCCESS aN QLD

ENT:Q COMMAND

ENTEszNUHBER OF TIMESTEPS

ENTER COMMAND

ENTEQC§ARIQBLE NAME (or C/R for

11682,
ENTER UQRIABLE NAME (or C/R for
e 3638e7=f+e7 1744323,
8486778
ENTER UGRIABLE NAME (or C/R for
$>5PSTOCK
41350.50
E\T:R UARIABLE NAME (or C/R for
ENTER comnann '

DO YOU UISH TQBLES TO BE SENT TQ
(y or N) IF NOT IT WILL BE SENT

ENTERCUQRIQBLE NAME (or C/R for
ENTERSURRIABLE NAME (or C/R for
ENTER UARIABLE NAME (or C/R for
YSPSTOCK

ENTER UARIABLE NAME (or C/R for
ENTER FIRST TIME TO BE TABULATED
EHT:RGLAST TIME TO BE TABULATED
ENTER TIME BETWEEN TABULATIONS

13

QWOU -1MUL L W)
P Y et oLt
L) 6 LHNUT-IUIUL
0 & LIUIW 5 VDU UL
N . o o

Q)

Ol

mn

WML O

-

’

RUN? (v or N)

end of list)
end of list)
9638885.

246354.9
end of list)

end of lisd)

A DISK FILE?

3528474,
§73486.2

TO YOUR TERMINAL

end of list)
end of list)
end of list)
end of list)

55249.

RN NN NN
Yade= U~ 00

o o
O -JMMO 5
b
u

41550.£22

5146151,
486021 .2

(2)

-21-

This next sequence of commands illustrates how to use the BACKUP

and SET procedures to move the simulation back to a previous

~time step, change a variable value, and continue the simulation.

A table is produced that is different from the previous example

starting at time 6.

ENTER COMMAND

1) BACKUP : '
EN’Eg TIME STEP FOR BACKUP (initial conrdition = @)
ENTE;ECONMAND
?NTmeggﬁlﬂBLf NAME (or C/R for end of list)
ENTEQSUALUE
ENTER UARIABLE NAME (or C/R for and of list)
EHTER COMMAND

$YRUN
ENTEg NUMBER OF TIMESTERS
ENTER COMMAND

DTA

BLE
DO voU WIsH TAB;ES TO BE SENT TO A DISK FILE?
Yy gr N) IF NQT IT WILL BE SENT TO YOUR TERMINAL

ENTER UQE’ABL: NAME (or C/R for and of list)
EHTEngggéﬁBLE NAME (or C/R for and of list)
ENTE; E?EéQBLE NAME (or C/R for =snd of list)
ENTER UARIABLE NAME (or C/R for end of list)
ENTE§ FIRST TIME TO BE TABULATED

ENT?TGLAS‘ TIME TO BE TABULATED

ENI§§ TIME BETWEEN TABULATIONS

TIME TCATCH TSTOCK SFSTOCK
i 5ee5.271 23193.958 181025.648

2 53689.776 21176.28S 18439.438

3 12858.244 718539.688 18742.841
.4 17398.352 §7258.268 £1485.625
5 15394.0392 $3242. 164 54755,841

5 32712.904 33932.273 32949.566

7 g28541.123 3939¢.602 17823.827

8 26392.258 31779.654 23279.578

lg 31i¢61.963 45404.1253 18379.631

38457.832 £§1304.188 30158.931

(3)

=22

This example illustrates the use of the GRAPH command. This

command can be used to produce variable trajectories or plots

of one variable vs another.

The first case shows a plot of a variable vs time.

ENT%RRCgNﬂQNO

TPUT SO THAT IT
g R B A
ENT%R UARIABLE FOR X AXIS
ENTé;IBERIﬂBLE FOR ¥ AXIS
ENTEEC?EggT TIME TC BE PLOTTED

ENTER LAST TIME TO B3E PLQOTTED
1>19

N

30.0
1

29.0
Y S

TcATCH
20.0

5.0

- = T
1.0 2.0 3.0 4.0 5.0 8.0 7.0 8.0 9.¢ 1.4
TIME

-23-

This sequence of commands produces a plot of one variable vs

another.

ENl:ﬁR;ggﬁgND 2 GRAPHICAL CUTPUT S0 THAT IT
SN R
: EHTEE UARIABLE FOR X AXIS

ENTE;CUQRIABLE FOR ¥ AXIS

EHTER SEBSCRIFT 1

EHT:% FIRST TIME TO BE PLOTTED

ENTERQLAST TIME TC BE PLOTTE

6.0

5.0

3.0-74.0

XNUM

2.0

0.0

- ‘
5.0 1g.q 15.C 20 0 25.0 30.0 3%.5 40.0

(4) This example illustrates the use of the MACRO command.

24-

A set

of DMP commands are strung together and given the name STOP.

When

this MACRO name is entered, the MACRO is executed and a table of

specified variables is produced.

MACRO

ENTER ¢ IF 73

ENTER D IF °

ENTER 0 IF Vo 6 Not

En*ga LJAME OF MAcRo

ENTER REPLY TO BE
:5TABLE

ENTER REPLY TO BE

ENT:R REP'Y T0 BE
$>TCATC

ENTER REPLY TO €
15 TSTACK

ENTER gEFLY TO BE

ENTgR REPLY TO BE

”VTE? REPLY TQ BE

ENTERGRCPLY TO BE

ENTER REPLY TO BE

ENTER REFLY TO BE

ENT;R COMMAND
:35TOP

HOU}NQNY TiMes DO

INCLUDED
INCLUDED
INCLUDED
INCLUDED
INCLUDED
INCLUDED
INCLUDED
INCLUDED
INCLUDED
INCLUDED

YOU WISH

—3
4
X
m

TCATCH

5625.271
$363.776
12858.244

32712.904
£68541.123
26392.258
31o6l.963
38457,332

[
O WOO-JHUN S LWIVr

ENT%R COMMAND

UIZH TG CREATE
WISH T DELETE

IN
IN
IN
IN
IN
IN
IN
IN
IN
IN

TO

& NEZu MACRO
AN QLD 1ACRO

wisA T3 DO EITHER
TO BE CREATED

MACRC (X for
MACRO (X
MACRO (X
MACRO (X
MACRQ (X
MACRO (X
MACRO (X
MACRO (X
MACRO (X
MACRG (X

for
for
for
for
for
for
for
for

for

EXECUTE THIS

TSTOCK

23103.998
£1176.289
71859.688
§7258.255
539249, 164
33332.273
39336602
31779.864
459404, 123
S1304.188

end)
end)
end)
end)
end)
end)
end)
end)
end)
end)

MACRO?

SPSTOCK

1819S.c46
18439.438
18742.641
£1485.825
54755.641
32949.566
17823.627
23279.576
18379.631
39159.931

-25-

Another feature of the MACRO command is that the sequence can be

executed repeatedly if necessary. This is extremely valuable when

multiple iterations of the same set of commands are necessary, for
example, in a stochastic simulation.

In this case the MACRO "STOP'" is executed 2 times.

aTop
HOU MQNY TIMES DO YOU WISH TC EXECUTE THIS MACRC

TIME TCATCH TSTOCK SPSTOCK
1 5625.271 23123.958 18195.546
e §388.77¢ cl176.289 18432.438
3 12858.244 71653.688 18742.641
4 17398.352 67258.268 81485.625
5 15394.092 59240.164 £4755.841
8 32712.904 33932.273 3E949.5686
? c6541.123 39399.502 17823.627
g 26392.298 31779.664 23279.576
9 3icel.ge3 49404.129 1837S.831
19 38457.3832 51304.188 39153.031
TIME TCATCH TSTOCK SPSTACK
i £625.271 23103.e98 18195.846
= 5363.776 2i176.289 18439,438
3 12858.,244 71659.688 18742.641
4 17398.35¢ 67258.268 £1485.625
g 15394.982 - £5249.164 £4755.841
8 32712.594 33932.273 329409.568
7 26541.123 39399.802 17823.827
g 26392.258 31775.664 23279.576 -
9 31061.963 489404.129 18379.831
io 38457.832 51304.188 39159.931
ENTER_COMMAND
DOEXIT

DVNﬂﬂIC MODEL PRQCESSOR ENDS

FORTRAN STOP

~26-

Adapting Other Models .
Since the nature of the DMP system is very general, other models
can be adapted quite easily and run on DMP. The necessary changes have
already been discussed, they involve setting up the model according to
the structure in Figure 2. Much of the I/0 could be removed, so in

this sense the model will be streamlined and much more efficient.

Any system dependent programming that will not run on the VAX will,

of course, not work in DMP either.

