
WOODS HOLE LABORATORY REFERENCE DOCUMENT NO. 84-16

Dynamic Model Processor User's Manual:

A Programming Aid for Easier Simulation Modeling

by

William J .. Overholtz and John W. Hauser

ltJ APPROVED fOR D!STR!GUHON I
I I- ~ tJa.,~~ I

j ~+-'-ROIr-~t:f4n"-l.<~G=O+-F F--!..I '--I A-:::l)--- I

I ~J~~/t~ J
l!DATE} ~ __ I _

National Marine Fisheries Service
Northeast Fisheries Center

Woods Hole Laboratory
Woods Hole, Massachusetts 02543

January 1984

dynamIc
dynamic
model
model
processor
processor

user's manllol
userlsmanual
a programming ol'd
for easier simulation
modeling

by

w/-II/om J- overholtz

J-ohn w houser

i J

TABLE OF CONTENTS

Introduction.
DMP System Philosophy

Features • •
Procedures for Writing a DMP Model ..

Variable Disc File
Command File . . • . . .
Model Construction

DMP Interactive Commands.
DMP Commands and Their Uses

Backup .
Graph.
Macro. . .. • .
Run. .
Set.
Show
Sub •.
Table.

An Examp 1 e of an Actual DMP Run
Adapting Other Models .

1
3
4
6
6
8
8

13
14
14
15
16
16
17 .
18
18
19
20
26

The education of a man is never completed until he dies.
- -,Robert E. Lee

Truth in science can be defined as the working hypothesis 'best
suited to open the way to the next better one.

--Konrad Lorenz

Foreword:

This guide to the Dynamic Model Processor (DMP) is designed as

an aid for modelers, to use the system with a minimum of effort.

The system is programmed in FORTRAN 77 and operates on the Woods

Hole Oceanographic VAX 11/780 computer. The guide can be read by

persons who have little familiarity with Fortran, but anyone who

wishes to use the processor as a simulation tool must have a working

knowledge of the language.

Intrdduction

In the past several years we have witnessed a quantum jump in

the use of high speed digital computers for solving problems in

almost "every pursuit of science. Astrophysics, agriculture, chemistry,

nuclear engineering, medical research, and paleontology are but a few

of the fields where computers. have an ever increasing role. The

directions that many of these disciplines are taking are being deter­

mined by the computer. The new interest in using computers to solve

problems that were previously too tedious or time limited has spawned

a whole new set of ideas and methods for solving complicated problems.

Computer languages ,such as Basic, Cobol, Fortran, APL, and Pascal have

become available for use by people from eVery walk of life. New

professional societies, such as the Society for Computer Simulation,

have been formed. Simulation modeling has made it possible for researchers

to enter into new realms of prediction and experimentation that were

onc"e impossible".

Even the biological sciences' venerable bastions of Baconian" logic

and method are" b.ecoming inextricably tied to the computer for their future.

Ecology, in particular, has benefitted from the array of new analyses,

models, and investigatory methods that are now available because of the

computer. The role of simulation modeling in this field has grown in

leaps and bounds in just a few short years and has taken a place of

importance alongside the traditional methods. New professional societies,

such as the International Society for Ecological Modeling,and journals,

-2-

such as Ecological Modeling~ are now prominent features of the science.

Numerous textbooks are available on ecological modeling and almost every

major university has courses and at least one faculty member who

considers. himself or herself a "modeler."

This proliferation of models~ methods, and strategies is viewed by

many as an impenetrable jungle3 and rightly so, for the inexperienced

programmer or the intermittent user. Fortunately, a number of simulation

systems or model processors have become available for the serious and

even part-time modeler to use. These systems strive to simplify the

modeling process so that more time can be spent on the results and relevant

output rather than the programming aspects. Several systems or processors,

notably SIMCON~ FLEX3 DYNAMO~ GASP~and SIMSCRIPT, were designed to make

life much easier on the simulation modeler; these can be interfaced with

the basic models to allow control of simulation inputs and outputs. These

systems typically include a command language specific to the particular

processor that allows the modeler to run one or several iterations of a

model and to produce many kinds of outputs, such as graphic displays.

This document discusses and highlights a new model processor

developed at the Northeast Fisheries Center. This system~ known as

Dynamic Model Processor (DMP)3 was developed to simplify the modeling

process for users of the Woods Hole Oceanographic VAX 11/780 computer.

This users manual is designed to explain the system and how it works.

It should be of interest to people from different areas of expertise

who use the WillI computer system. For more details and documentation~

consult the DMP manual prepared by John W. Hauser, 12 September 1983.

-3-

DMP System Philosophy

The goal of the DMP system is to simplify the task of computer

modeling. It is a difficult" process to design a computer program that

not only contains the equations and code for the rules of update for

the model but also ,contains all the input and output (I/O) and variable

interactions. Anyone who has constructed a simulation model knows

how laborious it can be to construct a model with all the associated

I/O. Any change that needs to be made usually involves major alterations

of the model code, and constructing. a new model means starting allover

with a new program. This process can be greatly simplified by standard­

izing the struct.ure of the model and also separating it from the actual

I/O and interaction procedures.

The basic design philosophy of the DMP system is as follows. The

user builds a FORTRAN model according to a specified structure that can

be interfaced with the processor (Figure 1). It is unnecessary to include

most READ~ WRITE, and FORMAT statements in the model because DMP is

designed to handle I/O for the user. Programming tabular output, graphics,

time sequencing and all the other real time activities that are used in

simulations are handled. by DMP. Much of the programming time and design

necessary for interactive simulation is spent in dealing with these

activities. The DMP system is such that simple commands are used to

accomplish the real time interactive changes in variable and graphical

output, etc. -' that are a necessary part of the process.

-4-

The model processor is separate from the model and as such makes

the simulation process much easier (Figure 1). The system is most

directly applicable in modeling. exercises where discrete time is used.

A time step for DMP is one complete cycle through the user's program.

Resolution for the time step could be on a daily, monthly, or yearly

basis, depending on the particular model of intereste

DMP has several features which are useful to the modeler in building

and running a simulation model. These are as follows:

1. A set of easily used and self-explanatory commands

for running the system.

2~ Variables can be viewed via the GRAPH or TABLE commands

after a simulation run.

3$ System states at any time step can be restored using

the BACKUP command.

4. Batch files can be used to run the simulation for the

modeler or DMP can be run in an interactive mode.

S. MACRO's or sets of DMP commands can be constructed and used

to make simulation runs. In addition, in cases where

multiple runs are desired, iterations of a MACRO can be

easily performed.

6. The user can intervene during any time step to change

variable assignments via the SET command.

7. There are 10 separate subroutine slots available for use by

the programm~r to do extra. calculations or work using output

from DMP. These subroutines are accessed with SUBl ... SUBI0

commands at the interactive level.

8. DMP is interfaced with the VAX graphic library during the run

initialization so that referral of graphics plots to the CALCOMP

or other plotter is easily accomplished.

-5-

Figure 1. Structure of a model built to run on DMP with the
necessary linkages to the system and the VAX plot
library (from Hauser 1983).

Use!."'s "rt~aintt

P!."ogram

f

MYINIT Dynamic DISSINT Use!."'s sub!."outine to I- Model I---
Graphics Library initialize variables P!."ocessor

MYSTEP
User's subroutine

.DISSPLA to change variables I-- I-- Graphics Library from one time step
to next

,--

T
ADDRESS

SU31 J- an integral
pa!'""t of DMP

.t-:-SUE2

SUB) J--
SUB4 1-
SU35 1-
sU36 }-

SU37 J--
'.

SUBS f-
SU39 J-
SUB10 J-

-'

-6-

Procedures for writing a DMP model

As previously mentioned, it is necessary for the DMP user to

construct a FORTRAN model according to a standard design in order to

access the DMP system. Three basic operations are necessary to interface

your model with the DMP; these are as follows:

1. Build a disc file with all the state variables that

you want DMP to recognize and record information about"

over the simulation time intervals you choose.

2. Build a command file that accesses the variable file,

provides output work space for DMP and defines other

necessary information that DMP needs to recognize and run

your model.

3. Construct your model according to the same structure

shown in Figure 2. DMP requires a main program loop that

calls the DMP processor, a subroutine called MYSTEP that

contains the model of interest and another subroutine

called MYINIT which setsthe·-,.initialvalues for the model.

Variable Disc File

The DMP system operates by recording current values for specified

variables at each time step of the model. This is why the variables

are so easily accessed at the end of a simulation for GRAPH, TABLE, or

any of the other DMP commands. It is important for the user to determine

which variables should be accessible and to put these into the variable

disc file (Figure 2). These variables are also put in a common block

-7-

Figure 2. Example structure of a model that includes a main program
loop, the MYINIT subroutine, the MYSTEP subroutine and the
additional SUB 1-10 subroutines. This model structure is
necessary for access to the DMP system .. (from Hauser 1983).

IHPUCIT CmGER (F..-Z)
REAL A,S,C,O(2C),E(3,4,5)
~~jC~ A,S,C,O,E
CALL IJ.iP
S'I'OP
aID

susrourTh'E HYI~1T
DlPLIC1T Th"TEGER (A-Z)
REAL A,B,C,D(20),E(3,4,S)
COMMON A,S,C,D,E
co 1=1,3

co J=1,4
r:o K=l,S

E(1,J,K}=1£g*I+1D*J+K
~lD co

~1) co
END r:o
RE'I'tJRN
Eli1l

SUBf;CU'l'Th'E MYSTEP
ll-1PLICIT nm::GER (A-Z)
REAL A,S,C,D(20),E(3,4,S)
CCMMCN A,S,C,O,E
A=A+l
3=8+1
C=C-1
r:o 1=1,20

0(1)=0(1)+1
END CO
REIT.J&'\j
w1)

SUBFCliTn.;£ SUBl
t:·1PLICIT INl'EGE..q (A-Z)
REAL A,S,C,D(20),E(3,4,S)
~QN A,B,C,D,E
TCTAL=A+B
WRITE(6,~) 'A+8:',rcn-nL
RE'l't.ffiN
Ell1)

StJBRcurn£ SUE2
RE'I't.JR-l'
aID
Stj'BRCurD;L SUB3
RETUR!:1
aID
SU'BRc<.j'T~'E SUB4
RETL'Rf
E!:iD
SU"BECUl'Th~ SUBS
RE'I'tmN
END
SUBRCliTmE SUB6
RETU1iN
EN)

su-arourL.'lE StJ8i
RE'I'U~1

rnD
Sf.JBBC{,iTTh'E SU"E8
REIt.~

em
SUSFOtJTI:.\j'E Su'B9
REI'UR"l
END
Sl.1E.rotrrllIE ~l"-Slkl

RETURN
~'D

! The rta.in prcgram calls eN.?

! Variables initialized in ~l'iI1aT if
! no~ previously L~tiaiized by the

variable definition file.

~1YSI'EP contains t."1e rule for cl"'.anging
variables from one ~2step to t."1e
ne~t.

S~routine to calculate arD display
A+8.

! Curnmy subrou~L~es

-8-

declaration statement in all the DMP subroutines that the user builds

(Figure 2).

Command fi Ie

As with many complicated programs where multiple file assignments

are necessary to run. programs on the VAX, it is advantageous to set up

a command file to make all the necessary file assignments (Figure 3).

In this case the DMP system requires all the assignments in Figure 3

for execution of the user's model. It would not run, for instance, if

the MACRO library $ ASSIGN was not included in the command file> even

if no MACRO's are to be used in the simulationQ

Model Construction

As previously mentioned all programming for DMP must be in FORTRAN.

The model processor is very' flexible, and will work on models for

discrete and continuous time applications. As such, DMP has no n1.lllleri.cal

integration subroutines or other internal capabilities for r~nning

standard continuous time integrators; these would all have to be programmed

into the MYSTEP subroutine. All models and applications of DMP to present

have been discrete time solutions. One loop through the MYSTEP subroutine

is considered a time step in the DMP system. The level of resolution

could be seconds> days> months, or years; this is entirely up to the

modeler. The processor functions on n1.llllber of time steps in the RUN mode~

hence it only records the complete cycles through MYSTEP~

~.

-9-

Figure 3. Linking procedure and type of command file necessary for
running a linked version of a model on the DMP system.
All the Fortran and other system assignments are necessary
parts of the command file (from Hauser 1983).

LINK myprcgram, [344. FISH]I1vIP I DISSINT/LlB, DISSPIA/LIB

. Create a comrrand file similar
$ASSIGN myvar .dat FOR001
$ASSIGN myrun.dat FOR002
$ASSIGN mytable.dat F0R003
$ASSIGN IIrjItE.cro. dat FOR004
$ASSIGN mygraph.dat DISSMETA
$ASSIGN NL: FCR009
$ASSIGN SYS$CettlMAND SYS$li@ur
$RLJN mypr03rarn

Execute the camand file.

to the follOwing:·
! Input file of-variable names

Record of run, a..tput, ca."'1 be input
Tabular output
User I s rracro library-
Defered plot output
Discards unneeded output
Accepts replies from terminal

1 Runs the lin.1<ed m:del

-10-

To build a model and interface it with DMP the modeler must follow

standard procedures., A standardized model is much easier to understand

and change. The main program loop is really only a call to the DMP

system (Figure 2). It contains little else but a call DMP statement.

The MYINIT subroutine is a variable initialization procedure.

Variables can be initialized in the variable disc file also, but MYINIT

override~ all such assignments .. The advantages of putting all such

infonnation into one location.are obvious when the user starts to build

complicated models. The variables that are in this subroutine and are

held in common can, of course, be changed at any time by using the SET

command. This subroutine can also be used to read outside disc files

that contain initial values for variables.

The final subroutine that the user needs to construct is called

MYSTEP (Figure 2). This subroutine is actually the model or the rules

of update that the user has constructed for the system of interest. In

other words., all the relevant equations, functional relationships,

mechanisms, etc., are programmed in this subroutine. To design efficient,

easily tractable models it is often advantageous to use the MYSTEP

subroutine as a main model loop with several FORTRAN call statements

to subordinate subroutines. This makes for an efficiently designed,

easily understood model that can. be read and followed by most people who

are familiar with FORTRAN.

-11-

Figure 4 describes the whole process in a diagram that traces

the different procedures to follow for building a model, interfacing

it with the DMP system, running it and leaving the processor.

-'

Figure 4. Flow diagram describing the steps necessary for constructing a
model, interfacing it with DMP, running it and exiting the DMP system.

0::0-0
-0 °m:.o
:.0 ~(/)O

0 ° 3:-0<
0 » 0 - s: o C zzO "1) c 0 O(J)m

Om --I m rm-
~

(J) ~ ~~ ~-t- -0 0 r.- Po (J) Z -<
-0--1 C f1l z<~ en

-i (J) Gl - :n -I (J) _
C 1> l> m

::0 »00 s: fTI Gl3:--I
0 m-o<

m
-

o (IJ

- c (J) _

or
0

::!!(()
r --I
III l>

--I
III

~
::0
);
(IJ

r
f1l

o f1l
o x

"TI 3:: f1l
;= ~ 0
m l> C

Z --I
o m

~-

I 0

° (IJ 3: c
;: -» r
Z 0
0
-n 0 - ~
~ -0

I

I

.----

L--

ror m3: z
:,_-07"

:.0<3:
-<~o

0 -om
rr
~~

--I
:x:

00
(J)(J)
(J)(J)
"1)­

rZ
1>--1

3:§8
-<-iz
(J)X(J)
--I --I
fTI;;:::o
"U-<c
~~~ 
~=t~ 
o 0 
C m 
:j r 
Z 
IT\ 
(J) 

0 
;;:0 
O~ 
0-0 
m-rr m 

0 
~ 
-0 

! 
I-' 
N 
I 



DMP commands 

BACKUP 

EXIT 

GRAPH 

MACRO 

RUN 

SET 

SHOW 

SUB 

TABLE 

:"13-

DMP Interactive Commands 

Function 

Returns the model to a previous time step 

Terminates the DMP run sequence 

Produces a graph of variables vs time or some 

other specified variable 

Enables the user to create a set of DMP 

commands that can be executed during a run sequence 

Runs the model by executing subroutine MYSTEP 

the requested number of times. 

Changes the current value of variables 

Displays the current value of a variable 

Enables the user to execute additional user 

supplied subroutines 

Produces a table of requested variables over' 

a specified time interval. 



-14-

DMP Commands and Their Uses 

This section summarizes the DMP commands that are available 

together with appropriate examples. After each command the system 

will, of course, prompt you for information. 

BACKUP: This command will return the model state to any previous 

time step or restore the model to the initial conditions. 

This is very useful if repeated runs are needed or 

parameter or variable assignments need to be changed 

and the simulation rerun or continued. 

(1. ): > BACKUP 

> 0 This command restores the model state to the starting 

point of the simulation run. 

(2 .): > BAC KUP 

> -1 This reinitializes the MYINIT subroutine and restores 

the model state to the starting point of the 

initialization run. Useful in cases where an outside 

function such as RAN~ the VAX random number generator, 

is used. 

(3.): > BACKUP 

> 5 This command sets the system state back to timestep 5. 



-15-

GRAPH: This command allows the user to output a graph on a graphics 

terminal or to a disc file for future plotting. Several 

options exist for producing a plot of one variable vs another 

or a time trajectory of a variable. 

(1.) : > GRAPH: Initiates GRAPH procedure 

> Y: Output will be written on a disc file 

> Time: X axis variable 

> B: Y axis variable 

> 0: 1st time to be plotted 

> 10: last time to be plotted 

This set of DMP commands will produce a graph wi th time as the 

X axis variable and B as the Y axis variable for interval 0-10. 

(2.): > GRAPH: 

> N: Output will be displayed on the terminal 

> A: X axis variable 

> B: Y axis variable 

> 0: 1st time to be plotted 

> 100: last time to be plotted 

This set of commands will produce a graph with A as the X axis 

variable and B. as the Y axis variable for the set of data points that 

occurred between tim,esteps 0 and 100 for these two variables. 



~16-

MACRO: This command allows the user to string together a series of 

(1. ) 

> 

> 

> 

> 

> 

> 

> 

DMP commands. This can be a very useful feature when a series 

of simulations are being run or repetitive command sequences 

are being used. This command does nothing itself, but allows 

the user to create a MACRO file that runs by typing the MACRO name. 

MACRO This phases the user with the MACRO mode 

C 

GO 

TABLE 

N 

A 

B 

Instructs the system to create a MACRO 

The user gives the MACRO a name of choice, 
in this case GO 

Instructs the system to produce a table 

The table will be displayed on the terminal 

Print variable A, B~ C in the 

table 

> C 

> end table command 

> 1 1st year on table 

> 10 last year on table 

> 1 interval time 

> x ends the MACRO creation 

This series of commands would produce a set of values for variables 

A, B, and C~ over the interval 1-10 with every timestep printed. By 

typing the word GO, this whole series of commands would be executed and 

the table would be produced. 

RUN: This command allows the user to run the model for a specified 

number of iterations. 

(1.): > RUN 

> 10 Run the model for 10 timesteps 



-17 -

The user in this case has run the model of interest over 10 

complete loops. Additional commands are needed to recover information 

from this run. 

SET: This DMP command allows the user to change parameter or variable 

assignments at any stage of the simulation. This command allows 

the us er to avoid changing the FORTRAl'J code in MYSTEP or MYINIT 

when parameter changes are required. 

(1.): > SET 

> A 

> 1.00 

allows the user to enter set mode 

variable you wish to change 

value you wish variable to be 

> gets user out of the set mode 

The variable A now has the value 1.00. 

(2.) : > SET gets user into the set mode 

> A change variable A 

> 100 variable A = 100 

> exit the set mode 

> RUN run the model for 5 time 

> 5 steps 

SET enter set mode again -
A change variable A again 

> 50 variable A = 50 

> exist set 

> RUN run model for 15 more 

> 15 interations 



-18-

This sequence of commands illustrates how the user can change a 

variable assignment during an actual simulation run. In this case the 

variable A was set to 100" 5 i:terations run, set to SO and 15 more 

iterations were run. 

SHOW: This command allows the user to display the current value of 

a variable. This command is useful for following model results, 

debugging the model, or ,checking that initial values are correct. 

(1.): > SHOW enter the SHOW mode 

> A 

10.0000 

> 

show value of v.ariable A 

variable A = 10.0 

exit show mode 

SUB: This command executes a user supplied subroutine. Often 

additional calculations or data analyses, that are separate 

from the MYSTEP subroutine, are desired. DMP provides the user 

with a work area to write up to 10 of thos~ separate user supplied 

subroutines. Any unused subroutines must be included in dummy 

subroutines (Figure 1). See sample user program (Figure 2) 

for more details. 



-19-

TABLE: This command a}lows the user to produce tabular output for 

any variable in the variable file. The output can be sent 

to the disc or the terminal. The user can send output to 

the disc with or without the variable headings. 

(1.) : > 

> 

> 

> 

> 

> 

> 

> 

>. 

> 

TABLE 

Y 

N 

A 

B 

C 

1: 

20 

1 

enter the table command mode 

send table to disc 

no variable headings on disc file 

include variable A,B,C in file 

stop entering variables 

1st time to be tabulated 

last time to be tabulated 

time interval 

This series of responses produces a table of variables A,B,C, on 

the disc without variable headings for time intervals 1-20 with each 

interval printed. 

(2. ) : > TABLE enter TABLE command mode 

> N send output to terminal 

> A output information for variable A 

> stop entering variables 

> 1 1st time to be printed 

> 10 last time to be printed 

> 2 time interval 

This series of responses would produce a table with variable A on 

the terminal for time interval 1-10, but only every other timestep 

be printed. 



-20-

An example of an actual DMP model run 

Now that the structure and function of the processor have been 

explained, some actual examples of using the command language will 

help the user to better understand the whole process. 

(1) In this first example the command file is executed, the SHOW; 

command is illustrated and a simple table with 3 variables is 

produced. The model in use is an actual fisheries management 

model that was built to simulate the dynamics of the Georges 

Bank haddock stock. 
DVNAMIC-MODtL PROCESSOR BECINS 
DO ~OU WANT TO REPROCESS QN OLD RUN? (Y or HI 

:)N 
ENTER COMMAND 

:)RUN 
ENTER NUMBER OF i!MESTE?S 

:)10 
ENTER COMMAND 

: )SHOW 
ENTER VARIABLE NAME (or C/R for end of t1~t) 

:)TCATCH 
11692~ 15 

ENTER UARIABLE NAME (or C/R tor end of tl~t) 
:)'l(NUM 

1.363a072E+~7 1744323. 9638865. 3528474. 
S304l06. 8486778. 246354.9 573486.2 

ENTER UARIABLE NAME (or C/R tor end of tl~t) 
:)SPSTOCK 
41950.60 

ENTER UAR!ABLE NAME (or C/~ for end of ti~t) 
:) 

ENTER COMMAND 
:)TABLE 

DO YOU WISH TABLES TO BE SENT TO A DISK FItE? 
(Y or N) IF NOT IT WItL 8E SENi TO YOUR TERMINAL 

:)H 
ENTER UARIABLE NAME (or C/R for end or ti~t) 

~ )TCATCH 
ENTER UARIABLE NAME (or C/R for end or \i~t} 

:)T$TOCK 
ENTER UARIABLE NAME (or C/R ro~ end of ti~t) 

: )SPSTOCX: 
ENTER UARIABLE NAME (or C/R for end of li~t) 

!) 
ENTER FIRST TIME TO BE TABULATED 

:)1 
EMTER LAST TIME TO BE TABULATED 

:) 10 
ENTER TIME BETWEEM TABULATIONS 

:)1 

TIr1E r:AT::-t 

t 5625,271 
2 5369.776 
3 123S8.244 
4 17398.352 
5 15394.092 
6 1:619.304 
7 13435.309 
8 14963.73e 
9 13724.293 

10 11692.151 

~SiO:< 

231~3.:a98 
21176.2S9 
71659.638 
67258.266 
59240.164 
47495.;e2 
61468.578 
6e217.~27 
S38S1. SA7 
44716.926 

SPS7C:K 

:81~5.646 
18430.438 
16742.64 1 
61485.6:5 
54755.641 
46279.773 
350al.~3S 
4S"82.S47 
4.,460.422 
41950.602 

5146191. 
466021.2 



-21-

(2) This next sequence of commands illustrates how to use the BACKUP 

and SET procedures to move the simulation back to a previous 

_ time step, change a variable value, and continue the simulation. 

A table is produced that is different from the previous example 

starting at time 6. 

ENTER COMMAND 
:)SACKUP 

ENTER TIME STEP FOR BACKUP (iniiial condiiion • 0) 
:)5 

ENTER COMMANO 
:)5£1 

ENTER VARIABLE NAME (or C/R for end of list) 
:)FMORT 

ENTER VALUE 
:).6 

ENTER VARIASLE NAME (or C/R for end of list) 
:) 

ENTER COMMAND 
:>RUN 

ENTER NUMBER OF TIME5TE?5 
: )5 

ENTER COMMAND 
:)TABLE 

DO'YOU WISH TABtES TO BE SENT TO A DISK FILE? 
(Y or NJ IF NQT1T WILL BE SENT TO YOUR TERMINAL 

:)N 
ENTER VARIABLE NAME (or C/R fOT end of tlst) 

:)TCATCH 
ENTER VARIABLE NAME Cor C/R (or end of list) 

:)TSTOCX 
ENTER VARIABLE NAME (or C/R for end of tlst) 

t)SPSTOCK 
ENTER VARIABLE NAME (or C/R for end of tlst) . 

:) 
ENTER FIRST TIME TO BE TABULATED 

:) 1 
ENTER LAST TIME TO BE TABULATED 

: > 10 
ENTER TIME BETWEEN TABULATIONS 

:) 1 

TIME TCATCH iSTOCK 

L 5625.271 23103.~98 
a 5369.776 21176.289 
3 12858.244 71659.688 
4 17398.352 67258.266 
5 15394.092 59240.164 
6 32712.904 33932.273 
7 26541.123 39390.S~2 
g 26392.258 31779.664 
9 31061. 963 49404.129 

10 38457.832 51304.188 

SPSTOCK 

18105.646 
18430.438 
16742.641 
61485.625 
$4755.641 
32940.566 
17823.627 
2327~.576 
18379.631 
30159.~31 



-22-

(3) This example illustrates the use of the GRAPH command. This 

command can be used to produce variable trajectories or plots 

of one variable vs another. 

The first case shows a plot of a variable vs time. 

ENTER COMMAND 
:)GRAPH 

00 YOU WISH TO DEFER GRAPHICAL OUTPUT SO THAT IT 
CAN BE PRODUCED LATER ON ~NOTHER DEU!CE? (V or N) 
IF NOT OUTPUT WItL BE TO YOUR GRAPHICS TERMIN~L 

:)M 
ENTER UARIABLE ~OR X AXIS 

:)TIME 
ENTER UARIABlE ~OR Y ~XIS 

I)TCATCH 
ENTER ~IRST TIME TO BE FtOTiED 

s)0 
ENTER LAST TIME TO BE PLOTTED 

1)10 

01 
• I 

.,... ~1 
u . 
'"- ' cr: 0 i 
2 oj 
• "\l 1 

=' 
Ln 

o 

I 

Ln~====~~--T-----~----r------ri-----ri ----~r, ----ii------rl 
l.0 2.0 J.O 4.0 s.o S.O 7.0 8.0 9.0 le.o 

TIME 



-23-

This sequence of commands produces a plot of one variable vs 

anotheF· 

E.NTER COf1r1AND 

DO !~g5~~~SH TO :JEr~R I~RA?Io,:CAL,..QllT~\.J~A~~ TH~T Ii N) 
CAN SE PRODUCED LAIER ON ANCTH~~~DpHVIcs~tERA~N~[ 
!F NOT OUTPUT WILL BE TO YOUR \a,,~ • Ij.} 

• \N 
ENTER VARIABLE FOR x AxIS 

!)TCATCH 
ENTER VAR!ABLE FOR V AXIS 

: ):-':NUM 1 
ENTER SUBSCRIPT 

:)1 
ENTER FIRST TIME TO BE PlOiTED 

:>1 ENTER LAST TIME TO BE PlOTiED 
:)10 

0: 

I 
C. 

\ . 
~ 0: 
~ r-i-t 
z : 
x i 

o. 
N~ 

! I 

O~_'j+-I __ ~~~~~I~ __ ~~ 
- i j~i 

S.O 20.0 25.0 30.0 3S.C 1D.O 
TCATCH 



-24-

(4) This example illustrates the use of the MACRO c"ommand. A set 

of DMP commands are strung together and given the name STOP. When 

this MACRO name is entered, the MACRO is executed and a table of 

specified variables is produced. 

MACRO 
ENTER C IF YOU W!SH r~ C~EA7E A ~EW MAC~O 
ENTER D IF YOU WISH TO DELETE AN OLD MACRO 
ENTER Q IF ly'OU DO NOT WISH TO CO E!THE~ 

"'c EN~~R NAME OF MACRO TO BE CREATED 
: >'3iOF 

ENTER REFt~ TO BE INCLUDED !N MACRO ex for end) 
:)TABLE 

ENTER REFt~ TO BE INCLUDED IN MACRO ex tor end) 
:>N 

ENTER RE?L~ TO BE INCLUDED IN MACRO ex for end) 
:)TCATCH 

ENTER RE?L~ TO 9E INCLUDED IN MACRO ex for end) 
:)TSTOCK 

ENTER REFLY TO 8E INCLUDED IN MACRO ex Cor end) 
: )SPSTOCK 

ENTER RE?L~ TO BE INCLUDED IN MACRO ex (or end) 
:) 

ENTER REFLY TO BE INCLUDED IN MACRO ex for end) 
:) 1 

ENTER REPLY TO BE INCLUDED IN MACRO ex for end) 
:) 10 

ENTER REPLY TO BE INCLUDED !N MACRO ex fOT end) 
:) 1 

ENTER REPLY TO BE INCLUDED !N MACRO ex for end) 
:>x 

ENTER COMMAND 
:)STOP 

HOW MANY TIMES DO YOU WISH TO EXECUTE THIS MACRO? 
~ > 1 

T!ME TCATCH TSTOCK SP5iOCK 

1 56"25.271 23103.098 18105.646 
2 5369.776 21176.aS9 184300438 
3 12858.24-4 71659.688 16742.641 
4 17398.352 67258.266 61485.625 
5 1539-4.1392 59240.164 54755.641 
6 32712.904 33932.273 32940.566 
7 26541.123 39390.602 17823.627 
S 26392.258 31779.664 23270.576 
9 31061.963 49404.129 18379.631 

10 3S~57.932 51304.188 3~HS9. 031 

ENTER COt'lMAMC 
:) 



-25-

Another feature of the MACRO command is that the sequence can be 

executed repeatedly if necessary. This is extremely valuable when 

multiple iterations of the same set of commands are necessary, for 

example, in a stochastic simulation. 

In this case the MACRO "STOP" is executed 2 times. 

::TOP 
HOW M~NV TIMES DO YOU WISH TO EXEC~TE 7H:S M~C~C? . '\~ ..... 

TIME 

1 
a 
3 
4 
5 
6 
7 
g 
9 

10 

TIME 
1 
2 
3 .. 
5 
6 
7 
8 
9 

10 

ENTER COMMANO 
: »£XIT 

TCATCH 

5625.271 
5369.776 

12858.244 
17398.352 
15394.092 
32712.904 
26541.123 
26392.2S8 
31061.963 
38457.832 

TC~TCH 

5625.271 
5369.776 

12S58.244 
17398.352 
15394.092 
32712.904 
26541.123 
26392.258 
31061.963 
38457.832 

OVN~MIC MODEL PROCESSOR ENDS 
FORTRAN STOP 

TSTOCK 

231~3.098 
21176.289 
716S9.688 
67258.266 
59240.164 
33932.273 
39390.602 
31779.664 
49404.129 
51304.1S9 

TSTOCK 

23103.098 
21176.2S9 
71659.688 
67258.266 
5924'0.164 
33932.273 
39390.602 
31779.664 
49404.129 
51304.188 

SPSTOCK 

181'05.646 
l8430.438 
16742.641 
61485.625 
54755.641 
32940.566 
17823.627 
23270.576 
18379.631 
30159.031 

SPSTOCK 

18105.646 
18430.438 
16742.641 
61485.625 
54755.641 
32940.566 
17823.627 
23270.576 
18379.631 
30159.031 



-26-

Adapting Other Models 

Since the nature of the DMP system is very general, other models 

can be adapted quite easily and run on DMP. The necessary changes have 

already been discussed, they involve setting up the model according to 

the structure in Figure 2. Much of the I/O could be removed, so in 

this sense the model will be streamlined and much more efficient. 

Any system dependent programming that will not run on the VAX will, 

of course, not work in DMP either. 

~. 




