ANNOTATED BIBLIOGRAPHIC LIST
OF EF&GR PERSONNEL PUBLICATIONS
ON FISHING OPERATIONS, METHODS,
TECHNIQUES AND GEAR
1954 - 1971
TABLE OF CONTENTS

1. Subject Index 3

2. Annotated Bibliography 14

3. Authors (listed alphabetically)

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bartlett, Martin R.</td>
<td>39</td>
</tr>
<tr>
<td>Bowman, Edgar</td>
<td>14</td>
</tr>
<tr>
<td>Bruce, Robert A.</td>
<td>14</td>
</tr>
<tr>
<td>Bullis, Harvey</td>
<td>27</td>
</tr>
<tr>
<td>Butler, C.</td>
<td>18</td>
</tr>
<tr>
<td>Cating, James P.</td>
<td>18</td>
</tr>
<tr>
<td>Corbett, Michael G.</td>
<td>15</td>
</tr>
<tr>
<td>Crossen, James M.</td>
<td>16</td>
</tr>
<tr>
<td>Fahlen, Lars A.</td>
<td>16, 27</td>
</tr>
<tr>
<td>French, Leon E., Jr.</td>
<td>17, 20</td>
</tr>
<tr>
<td>Griswold, B. L.</td>
<td>37</td>
</tr>
<tr>
<td>Handwork, Warren</td>
<td>17</td>
</tr>
<tr>
<td>Hirtz, Charles R.</td>
<td>28</td>
</tr>
<tr>
<td>Hsu, Benny C. C.</td>
<td>30, 31</td>
</tr>
<tr>
<td>Joyce, A. H.</td>
<td>26</td>
</tr>
<tr>
<td>King, F. S.</td>
<td>26</td>
</tr>
<tr>
<td>Knake, Boris O.</td>
<td>17</td>
</tr>
<tr>
<td>Kurlyandsky, Y.</td>
<td>37</td>
</tr>
<tr>
<td>Martin, Charles</td>
<td>19</td>
</tr>
<tr>
<td>Mather, Frank S., III</td>
<td>36</td>
</tr>
<tr>
<td>McRae, Ernest D., Jr.</td>
<td>19, 26</td>
</tr>
<tr>
<td>Medico, Ernest S.</td>
<td>22</td>
</tr>
<tr>
<td>Mendelsohn, J. M.</td>
<td>26</td>
</tr>
<tr>
<td>Murdock, James F.</td>
<td>18</td>
</tr>
<tr>
<td>Murray, John J.</td>
<td>23</td>
</tr>
<tr>
<td>Parker, Phillip S.</td>
<td>22, 24, 37</td>
</tr>
<tr>
<td>Puncohar, J. F.</td>
<td>18</td>
</tr>
<tr>
<td>Rathjen, Warren</td>
<td>26</td>
</tr>
<tr>
<td>Rivers, Joquim B.</td>
<td>28</td>
</tr>
<tr>
<td>Rogers, S. J.</td>
<td>29</td>
</tr>
<tr>
<td>Ropes, John W.</td>
<td>19</td>
</tr>
<tr>
<td>Ruggiero, Michael</td>
<td>31</td>
</tr>
<tr>
<td>Smith, Keith A.</td>
<td>31</td>
</tr>
<tr>
<td>Squire, James L., Jr.</td>
<td>35</td>
</tr>
<tr>
<td>Standley, Mark L.</td>
<td>37</td>
</tr>
</tbody>
</table>
Stubbs, H. E. 35
Sullivan, J. 31
Twohig, Patrick J. 37
Wilson, Peter C. 27, 38
Wolf, Robert S. 37
Yesaki, M. 29, 30
Aerial Investigation

66; p. 36 Aerial fish spotting in the United States.

Alaskan Fisheries Resources

50; p. 29 Alaska shrimp exploration. 1962-1964
48; p. 28 Bottom trawling surveys on the northeastern Gulf of Alaska.
47; p. 28 Gulf of Alaska scallop exploration.

Air-Bubble Curtains

See Experimental Fishing

Artica Islandica

See Clams

Attraction Devices

57; p. 31 See Electronics

Bluefin

See Tuna

Branchline Clips

6; p. 15 See Longline Gear and Equipment

Bottom Sampler

9; p. 16 See Shellfish Gear
21; p. 19 The abundance of hard clams in Nantucket Sound, Massachusetts.

33; p. 24 Clam survey Ocean City, Maryland to Cape Charles, Virginia.

37; p. 25 Clam survey off Virginia (Cape Charles to False Cape).

34; p. 24 Ocean clam survey off U.S. Middle Atlantic Coast. 1963

39; p. 26 The Ocean quahog - a bountiful clam.

38; p. 25 The ocean quahog, *Arctica Islandica,* resource off the Northwestern Atlantic.

56; p. 31 The surf clam fishery of New Jersey.

Caribbean Fisheries

19; p. 18 Double-rig shrimp trawling in the Gulf of Mexico.

51; p. 30 Exploratory fishing activities - UNDP/FAO Caribbean fisheries development project; symposium on investigation and resources of the Caribbean Sea and adjacent fisheries.

43; p. 27 Experimental trawling for red snappers.

54; p. 31 Sea bob fishery of the Guianas.

53; p. 31 Whaling in the West Indies.

Clam Surveys

See Clams
Cod End

28; p. 22 See Trawls

Crimping Sleeves

75; p. 39 See Longline Gear and Equipment

Depth Control

62; p. 35 See Experimental Fishing

Dredge

70; p. 37 See Shellfish Gear

Deck Block Mounting Pad

5; p. 15 See Vessel Equipment

Echo Reflectors

11; p. 17 See Electronics

Electrical Fishing

See Electronics

Experimental Fishing

58; p. 32 Air-bubble and electrical-field barriers as aids to fishing.

59; p. 32 Air-curtain fishing for Maine sardines.

62; p. 35 Rotor devices for controlling depth of towed fishing trawls.
The use of air-bubble curtains as an aid to fishing.

Electronics

A device for automatically recording fishing effort aboard fishing trawlers.

Echo reflection for sonic measuring system on an otter trawl.

Use of an electrical attracting and guiding device in experiments with a "fish pump".

An experiment in electrical fishing with an electric field used as an adjunct to an otter trawl net.

Results of sea testing a device for recording fishing effort data.

Sonic reflector for sonic measuring system on an otter trawl.

T.V. eye scans sea bottom for new resources.

Future Resources

Untapped north Atlantic fisheries.

Fish Spotting

See Aerial Investigation

Freezing

Freezing fish at sea.

Fish Handling

Freezing fish at sea.
1; p. 14 Recommended practices for vessel sanitation.

Gill Nets

15; p. 18 New England sink gill net.

45; p. 27 Russian Gill Netter.

Gulf of Mexico

19; p. 18 See Caribbean Fisheries.

Herring

60; p. 33 See Maine Herring.

Long Line Gear and Equipment

75; p. 39 Long line gear improvements - aluminum crimping sleeve prevents hook damage by electrolysis.

6; p. 15 Quick release branchline clip developed for longlining.

Longlining

76; p. 39 Inventory of U.S. exploratory long-line fishing effort and catch rates for tunas, and swordfish in the Northwestern Atlantic.

73; p. 38 A small boat tuna long-line fishing.

Lobster

22; p. 19 Lobster exploration on continental shelf and slope off Northeastern coast of the United States.
Mackerel
16; p. 18 See Purse-seine

Measuring Board
35; p. 25 See Shellfishing Gear & Equipment

Mending
14; p. 17 See Net Mending.

Maine Herring
60; p. 33 Exploratory fishing for Maine herring.

Net Mending
14; p. 17 Methods of net mending.

Net Twine
55; p. 31 Braided synthetic twines and their use in New England trawl fishery.

Nets
See Trawls.
See Gill Nets
See Purse-seine

Otter Trawls
18; p. 18 See Trawls.

Ocean Quahog
See Clams.
Pandalus Borealis

4; p. 15 See Shrimp

Pollock

26; p. 21 Pollock

Purse Seine

16; p. 18 Atlantic coast mackerel purse seine.
41; p. 26 The haul seiners.

Russian Gill Netter

45; p. 27 See Research Vessels.

R/V Delaware

10; p. 16 See Vessel Equipment

Red Snapper

43; p. 27 Experimental trawling for red snapper.

Research Vessels

13; p. 17 How Lake Superior gill net vessel was converted to a trawler.
72; p. 37 Research vessels of the N.M.F.S.
45; p. 27 Russian gill netter docks in Boston, Massachusetts.
25; p. 21 The West German research vessel Walhter Herwig.

Red Crab

23; p. 20 Red crab exploration off the Northeastern coast of the United States.
Recording Equipment
7; p. 16 See Electronics

Sonic Reflection
12; p. 17 See Electronics

Submersible Pumping System
70; p. 37 See Shellfish Gear

Scallops
47; p. 28 Gulf of Alaska scallop explorations.

Shellfish Gear and Equipment
35; p. 25 A clam measuring board
70; p. 37 Development of a submersible pumping system for a hydraulic surf clam dredge.
40; p. 26 History and development of surf clam harvesting gear.
36; p. 25 Sleeve for clam jetting hose connection.
9; p. 16 Special small-clam retainers and bottom sampler designed.

Shrimp Industry
50; p. 29 Alaska shrimp exploration, 1962-1964.
64; p. 35 Development of the Pacific coast ocean shrimp fishery.
19; p. 18 Double-rig shrimp trawling in the Gulf of Mexico.
4; p. 15 Machine for separating Northern shrimp, Pandalus Borealis from fish and trash in the catch.
2; p. 14 The New England shrimp fishery.

42; p. 27 Shrimp exploration off the Southeastern coast of the United States.

Sea Bob

54; p. 31 Sea bob fishery of the Guianas.

Surf Clam

56; p. 31 See Clams

Television

49; p. 29 See Electronics

Twine

55; p. 31 Braided synthetic twines and their use in the New England trawl fishery.

Trawl Performance

71; p. 37 See Trawls

Trawls

18; p. 18 Assembly methods for otter trawl nets.

28; p. 22 Certification and after use measurement of manila otter trawl cod ends.

3; p. 14 North Atlantic trawl nets.

20; p. 19 Operation of North Atlantic type trawl gear.

71; p. 37 Performance of trawls used in joint US-USSR groundfish studies.
Bottom trawling surveys of the Northeastern Gulf of Alaska.

Double-rig shrimp trawling in the Gulf of Mexico.

Experimental trawling for red snapper.

Progress report on midwater trawling studies carried out off the New England coast in 1961 by the R/V Delaware.

Trawl fishing potential off Northeastern South America.

Tuna

Distribution of tunas in oceanic waters of the Northwestern Atlantic.

Distribution of tuna species in the oceanic Northwest Atlantic.

Gulf of Maine bluefin tuna exploration, 1952.

Gulf of Maine bluefin tuna explorations - 1953.

Gulf of Maine bluefin tuna explorations - 1954.

New England commercial bluefin tuna purse-seining.

Observation on the commercial potential of tuna in the oceanic Northwest Atlantic.

Review of the development of the Atlantic coast tuna fishery.

A small boat tuna long-line fishery.
US-USSR Groundfish Study

71; p. 37 See Trawls.

Vessel Sanitation

1; p. 14 See Fish Handling

Vessel Equipment

10; p. 16 Deck equipment layout on the R/V Delaware for surf clam survey.

13; p. 17 How Lake Superior gill net vessel was converted to a trawler.

4; p. 15 Machine for separating Northern Shrimp Pandalus borealis, from fish and trash in the catch.

5; p. 15 A removable deck-block mounting pad.

Whaling

53; p. 31 Whaling in the West Indies.
1) Bowman, Edgar W.
Current practices aboard commercial fishing vessels have come about largely through trial and error, rather than through the application of research findings. As a result, fishermen have not always kept pace with the increasing demands by consumers for fishery products of higher quality. This report can provide the fishery industry with a measuring stick necessary for self evaluation, while supplying specific recommendations for improving vessel sanitation and fish handling techniques.

2) Bruce, Robert A.
The New England shrimp fishery is active in the northeast section of New England from the Canadian border down to Gloucester. The impetus of the introduction of a foreign market for these shrimp (Pandalus borealis) has generated a marked increase in effort and production since 1965. Current production is 28 million pounds. There have been no large scale developments of gear other than the local development of a shrimp pot or construction of many specialized craft. Vessels have been purchased from outside the region to supplement the existing fleet and small locally built boats converted to shrimp trawling. Trawls to separate the shrimp from other species and larger vessels equipped for prolonged periods at sea to catch, prepare, package and store shrimp are being contemplated.

3) Bruce, Robert A.
This leaflet is designed to answer requests for information about otter trawls currently used in the North Atlantic fisheries. Its major emphasis is on trawls used on New England trawlers, but it also includes some of the trawls used by other countries fishing the grounds of the Northwest Atlantic.
Data such as overall size, twines, mesh sizes, rope and wire size, roller and chain gear, floatation, rigging and certain construction details accompany the drawings and texts for each net described. The designs cover trawls for vessels from 55 feet with 22 hp engines to 250 feet with 2,400 hp engines.

A machine was developed to separate shrimp from the bulk of groundfish and other species taken in trawl catches. Its use eliminates sorting by hand. About 95 percent of the shrimp are recovered by this means while about 90 percent of the trash is removed.

A deck-block mounting pad was intermittently required on deck for specialized fishing operations. Rather than welding a pad to the deck and then burning it off each time, a pad was needed. A quickly removable mounting pad was designed. Details of its construction are given.

A clip suitable for automatically or semi-automatically attaching the droplines (gangions) to the mainline of longline gear has been developed. Use of this clip helps to reduce and with further development of auxiliary systems may eliminate manual handling of longline gear. The clip was developed to help improve safety aboard vessels, reduce labor requirements and increase speed and efficiency of the fishing operation.
7) Crossen, James M.
Sea tests were conducted of the Fishnet Bathykymograph (FBK) aboard commercial otter trawlers and Bureau of Commercial Fisheries research vessels, during the period of November 1969 through March 1970. The FBK, attached to an otter trawl headrope, recorded the number of tows and the duration and depth of each during a fishing trip. Test methods and results are described.

8) Crossen, James M.
The Fishnet Bathykymograph (FBK) was developed to measure fishing effort aboard commercial trawlers for the Bureau of Commercial Fisheries. The system employs a shock isolated, 14-day time-depth recorder, and Dockside-Support Equipment (DSE) for instrument calibration and retrieval of data. Effort data are recorded on magnetic tape which, with additional processing, is computer compatible. The FBK attached to an otter-trawl headrope records the number of tows and the duration and depth of each during a fishing trip. (En. en.).

9) Fahlen, Lars A.
A simple device for collecting biological samples from a commercial sized hydraulic clam dredge is described.

10) Fahlen, Lars A.
Arrangements for utilizing a side trawler for surf clam operations are discussed.
11) French, Leon E., Jr.
Material deals with sonically measuring distance between points in an otter trawl during operation by use of transducers and an echograph records.

12) French, Leon E., Jr.
Sonically measuring distances between points in an otter trawl during operation by use of transducers and an echograph recorder presents problems. For example, when the headrope height of an otter trawl is about one-half the wing-end spread, the headrope and wing-end measurement traces appear at the same location upon the recording paper. The simultaneous overlay of signals can be corrected by use of a sonic echo reflector to replace one of the wing-positioned transducers in the measuring system and by use of the echo-signal method instead of the direct-signal method. The echo signals, however, are weaker than the direct signals.

This paper reports on a test of three reflectors: plain wood, aluminum sheet, and checkered aluminum. All three reflectors gave usably strong echo signals. The best quality signal was given, however, by the aluminum reflector.

13) Handwerk, Warren
This publication illustrates and describes how a 45 foot, 120 horsepower gill net vessel was converted to a trawler. The conversion features a minimum of structural alterations but allows the vessel to function either as a stern trawler or gill netter.

14) Knake, Boris O.
This publication describes the method of net mending as practiced by the New England otter trawl fishermen. Net mending procedures and various knots are illustrated.
15) Knake, Boris O.
This paper deals primarily with the "Sink Gill Net" used in New England and designed to catch codfish, haddock and pollock. Illustrations demonstrate the construction, setting and hauling operations, and maintenance of gill nets.

16) Knake, Boris O.
Describes and illustrates a New England purse seining operation for mackerel.

17) Knake, Boris O., C. Butler and J. F. Puncohar
A description of the experimental trawler Delaware is presented, including the general characteristics of the vessel, alteration of the fish hold, and the refrigeration system. Also described are the shore facilities, which consist of the pier for moorage of the vessel and freezing facilities, and handling of the fish ashore.

18) Knake, Boris O.
Efficient fishing performance of the trawl net is contingent on proper and precise assembly of the web sections and net rigging. This leaflet gives step by step illustrations and descriptions of the proper method of assembly.

19) Knake, Boris O., James F. Murdock and James P. Cating
The purpose of this leaflet is to provide owners of conventionally rigged shrimp trawlers with basic information required for conversion to double-rig trawling.

20) Knake, Boris O.
A report on fishing North Atlantic type otter trawl from a typical New England side-trawler. Fishing procedures of setting, shooting, the trawl, hauling and landing the catch are described.

21) Martin, Charles E. and John W. Ropes
A survey was made during the summer of 1958 to assess the abundance of hard clams in Nantucket Sound, Massachusetts. A jet (hydraulic) dredge was used as the principal sampling gear. Data from 214 sample stations compared with other Atlantic coast areas indicated that the abundance of hard clams in Nantucket Sound was extremely low. The survey revealed no new general areas of commercial abundance. No clam less than 60 millimeters (2 3/8 inches) was caught. The future for any significant fishery for hard clams in this area is uncertain.

22) McRae, Ernest D., Jr.
Commercial quantities of American lobster (Homarus americanus) were found in deep water as a result of explorations conducted by the U. S. Bureau of Commercial Fisheries on the continental shelf and slope off the northeastern portion of the United States in depths of 50 to 600 fathoms. Two areas were defined by the Bureau’s exploratory research vessel Delaware in which sufficient numbers of lobsters were taken to indicate the feasibility of commercial-scale exploration. Standard commercial trawling gear was used at all of the 211 stations covered in the investigation.
23) McRae, Ernest D., Jr.

Limited explorations for the deep-water red crab (Geryon quinquedens) were conducted by the U. S. Bureau of Commercial Fisheries during the 12 months beginning July 1959. A total of 121 drags were made with commercial trawling gear in areas between the Gulf of Maine to Cape Hatteras. Depths investigated ranged from 50 to 1,040 fathoms and red crabs were taken between 60 and 800 fathoms. The best fishing was between 200 and 300 fathoms.

Results of tests indicate that both yield and quality of the red-crab meat is good, but the quantities of crabs taken are considered insufficient to support profitable commercial-scale fishing for red crabs alone at the depths where the largest concentrations of crabs were found.

24) McRae, Ernest D., Jr. and Leon E. French, Jr.

Electrical fishing is not a new fishing method, however, problems with application in a marine environment have limited its successful use to date. As part of cooperative research with the Smith Research and Development Company (SRD), the U. S. Bureau of Commercial Fisheries test-fished electrical fishing equipment (developed by SRD) which was designed to overcome these problems.

The tests were conducted on New England commercial fishing grounds and used an electric field as an adjunct to an otter trawl (net) of commercial design. To determine the fishing effectiveness of the electric field, a comparative method of towing was employed. This consisted of a series of as nearly identical tows as possible with the electric field used on alternate tows.

The test results indicate that for overall fishing, the net with the electric field fishing over 2.3 times as effective as the net alone. The fishing effectiveness of the net with the electric field was 1.5 times that of the net alone for taking cod and haddock. For flatfish,
the net with the electric field was twice as effective as the net without the field. The catch rate for taking whiting with use of the electric field was 4.4 times the catch rate of the net alone.

The Walther Herwig is a modern fishery research vessel built for the West German Government and launched in 1963. The vessel was primarily designed as a stern trawler for use in high sea fisheries investigations with emphasis on mid-water and bottom trawling. Pertinent features of design, equipment, appurtenances, arrangement, and location are described in some detail for the benefit of interested groups or organizations who may be planning to build or outfit vessels of their own for similar use.

The harvest of marine fishery resources becomes more complex as new, and often unfamiliar, kinds of gear become available to fishermen and as competition for the world's fishery resources grows. United States fishermen need key information on the fish species sought - water temperature, grounds, seasons, gear, market potential, etc. - to plan future operations intelligently. This is of special interest when a fisherman considers entering a new or different fishery. The aim of this Resource Report series is to get this key information where known, into the hands of those in the fishing industry in some concise form. Emphasis is on under utilized and potential fishery resources.

This report on pollock is the first in this series. The contents were assembled by National Marine Fisheries Service personnel. Their work covers the areas of information discussed. Their objective was to make this pamphlet useful to the industry for planning fishing strategy. We invite the suggestions of readers for improving future pamphlets.

\[1\] Formerly Bureau of Commercial Fisheries.
27) McRae, Ernest D., Jr. and Phillip S. Parker
1970. The ocean quahog, *Arctica islandica*, resource of
the Northwestern Atlantic. Dept. of Interior, U.S.F.W.S.,

The ocean quahog is a species of marine clam. Some
of the anatomical differences between it and the hard
clam, *Mercenaria mercenaria*, are discussed. The range
and population density of the ocean quahog in Continental
Shelf areas off the Atlantic seaboard vary considerably
with changes in water depths and bottom sediments.

Much of the basic information for this article was
gathered during the survey of the surf clam, *Spisula
solidissima*, by the Bureau of Commercial Fisheries. The
gear, method used, procedure, and results of the survey
pertinent to ocean quahogs are presented.

The ocean quahog resource is generally unused. It
is waiting for anyone willing to reap the harvest.

28) Medico, Ernest S.
1958. Certification and after use measurement of manila
otter trawl cod ends. Dept. of Interior, U.S.F.W.S.,

Describes the development and summarizes some
results of the program for certifying manila twine cod
ends used by the United States trawling fleet in the
fishery for haddock, *Melanogrammus aeglefinus* (Linnaeus),
in Northwest Atlantic Fishery Convention Subarea 5. To
implement international treaty agreements concerning
this fishery and to assist the industry in complying
with mesh-size regulations, a program was developed for
certifying new dry cod ends, which met certain tests,
as having meshes equivalent to 4½ inches when wet after
use. Measurements were made of these manila cod ends,
after varying amounts to use in the haddock fishery, to
determine changes in after-use mesh size.

In June 1953 when regulations implemented the use
of meshes for otter trawls fishing in Subarea 5, a mesh
size of 5-5/8 inches (dry, knot center to knot center)
was recommended for new before-use cod ends. Upon
further study the before-use mesh size was lowered to
5-5/8 inches, because the meshes stretched after use to
a greater degree than anticipated.
29) **Murray, John S.**

The development of a Gulf of Maine commercial tuna fishery has long seemed to be a definite possibility. Successful establishment of such a fishery would substantially contribute to year-round employment in the sardine industry which is now operating on a seasonal basis. This report discusses such topics as (1) the extent and range of bluefin-tuna concentrations in New England coastal waters during the summer and fall seasons, (2) the availability of bluefin-tuna in quantities sufficient to warrant an expanded fishing operation, and (3) the testing of various fishing methods and equipment to determine the most efficient methods for capturing tuna in commercial quantities.

30) **Murray, John S.**

Exploratory fishing for bluefin tuna, using Japanese-style long-line gear, was conducted from June through October 1952, in offshore waters from Maine to New Jersey. Gill nets, trammel nets, surface-trolling gear, and hand lines were also tested to a lesser extent. All available evidence suggests that the 1952 run of tuna in New England was far below normal. In spite of the low total catch, some aspects of this season's long-line fishing were encouraging. Potentially valuable tuna grounds producing excellent individual catches were found within 30 miles of land.

31) **Murray, John S.**

The third successive season of exploratory fishing for Gulf of Maine bluefin tuna was conducted from July 15 to October 15, 1953. Long-line gear was used as the principal fishing method, with surface trolley lines, floating gill nets, and trammel nets as secondary gear.
The long-line catch of tuna was much smaller than in the preceding years -- only 38 tuna weighing 2,000 pounds (round weight) as compared to 12,000 pounds in 1952, and 190,000 pounds caught by purse seine in the 1951 exploration. This report discusses the fishing results, gear performance and presents a condensed log of fishing trips.

The California purse seiner Western Pride operated in the New England bluefin-tuna fishery from July 28 to September 9, 1954, under a cooperative agreement with the U. S. Fish and Wildlife Service. Fishing activities were conducted in the Cape Cod-South Channel area. Best fishing areas were found 40 nautical miles east southeast of Buoy "R6" of Chatham, Mass., and 10 nautical miles northeast of Race Point, Mass. This report discusses the vessel and fishing equipment and scouting and fishing results.

During the summer of 1964 and the fall and winter of 1965, the BCF conducted a clam survey off the coasts of Maryland and Virginia. The purpose of this survey was to gather information on abundance, distribution, and size of surf clams. Operations and results are described.

A cooperative clam survey was conducted during the summer of 1963 by the Eastern Sea Clam Packers Committee of the Oyster Institute of North America and the U. S. Bureau of Commercial Fisheries. The purpose was to locate and assess clam resource in the area adjacent to those commercially fished. Operations are described and results discussed.
35) Parker, Phillip S.
A new type of measuring board was developed to make rapid measurements of surf clams aboard vessels at sea and under rough sea conditions more easily possible. This board can be built by almost anyone handy with tools. Sufficient details are given to guide in the construction of functional measuring boards.

36) Parker, Phillip S.
A steel sleeve similar to those now frequently used in the commercial sea clam industry to connect two sections of clam jetting hose is described. This device is quick and easy to use and has proven to be highly effective and serviceable.

37) Parker, Phillip S.
The third in a series of surf clam surveys being made by the Bureau of Commercial Fisheries was completed off the coast of Virginia between May 1965 and May 1966. Its purpose was to explore for populations of surf clam; to determine the abundance and distribution of clams in this area; and factors affecting the populations, and to collect data on other species of shellfish. During the survey 1,367 stations were occupied and catches ranged from 0 to 9 bushels of surf clams per tow. Areas surveyed and the results of the survey are described.

38) Parker, Phillip S.
The ocean quahog is a species of marine clam. Means for sight-keying this clam and separating it from the similar hard clam, Mercenaria mercenaria, are discussed.
The range and population density of the ocean quahog in Continental Shelf areas off the Atlantic seaboard vary considerably with changes in water depths and bottom sediments. The gear, method used, procedure and results of a survey pertinent to ocean quahogs are presented.

The Bureau of Commercial Fisheries (BCF) has considered the potential of the ocean quahog and has undertaken preliminary resource development work. Investigations have been conducted to establish the extent of the resource by extensive exploratory surveys. Efforts have been made to promote the acceptance of ocean quahogs as a food item on a near par with other marine clams; this has been done by developing new receipes and usages. Such topics as resource location and yield, past use of the quahog, factors affecting quahog utilization, and new products made with ocean quahogs are discussed.

The development of harvesting gear for surf clams, Spisula solidissima, along the eastern coast of the United States is reviewed from early times up to the present. Most gear development work has been the result of the surf clam industry itself. However, the Federal Government, in cooperation with industry, has developed several pieces of equipment for adaptation to claming gear.

Short description of beach haul seining off Long Island, N. Y. with photograph.
42) Bullis, Harvey R., Jr., and Warren F. Rathjen
Exploitations between Cape Hatteras and Florida Straits. Principal findings quantities of royal red shrimp and calico scallops.

43) Rathjen, Warren F.
Use of New England type heavy duty fish trawls on coral bottom described. Work completed on Campeche Bank and in other portions of the Gulf of Mexico.

44) Rathjen, Warren F.
Sink gill net fishing as practiced out of Gloucester described.

45) Rathjen, Warren F., and Peter C. Wilson
Tells of visit aboard Russian vessel fishing for herring with gill nets.

Experiments with midwater trawling gear were conducted in 1961 by the U. S. Bureau of Commercial Fisheries with the research vessel Delaware. The principal objective of work in 1961 was to modify midwater trawling gear so that it could be controlled accurately. A depth-sounder transducer was mounted
on the headrope of a trawl to allow a constant check to be made on the relation of the net to the bottom and to fish schools. In limited fishing trials, carried out with the transducer-equipped net, over 25 species of marine animals were sampled. Atlantic herring were caught in amounts up to 4,500 pounds per tow. Other commercially-desirable species taken including whiting (silver hake), mackerel, and butter fish. The midwater gear experiments and explorations are scheduled to continue.

47) Rathjen, Warren F. and Joquim B. Rivers

Exploratory fishing for scallops (Patiniopecten caurinus) was conducted in the waters of the Gulf of Alaska during 1963. The objective of this survey was to determine the practicality of more detailed explorations for scallops in that area. Catches of scallops were made in amounts as high as 7 bushels per 30-minute drags with an 8-foot dredge. The individual scallops ranged up to 7 inches in diameter and yielded approximately 4-6 pounds of shucked meats per bushel measure. Good catches of scallops were taken at several locations including: off Cape Fairweather at depths from 34-42 fathoms, off Icy Bay from 39-44 fathoms, and east of Cape Saint Elias where catches were taken between 54 and 56 fathoms. It is not expected that this potential resource will receive significant exploitation until (1) the range and abundance are better defined and (2) through consideration is given to all aspects of the economics including production, processing and marketing.

48) Hirtz, Charles R. and Warren F. Rathjen

The U. S. Bureau of Commercial Fisheries in cooperation with the International Pacific Halibut Commission used otter trawls to survey bottomfish and shellfish on the Continental Shelf and upper continental slope in the Gulf of Alaska. Much of the area surveyed was judged to be untrawlable with conventional bottom trawls used in the surveys. Flatfish made up 43 percent of the total catch of fish and invertebrates. The arrow-tooth flounder or turbot was dominant species
at all depths, comprising 60 percent of the flatfish catch and 26 percent of the combined fish and invertebrate catch.

 Describes the use of underwater television in underwater surveying.

 Recognizing the need for more detailed knowledge of potential Alaska shrimp resources, the U. S. Bureau of Commercial Fisheries conducted intensive exploratory fishing with shrimp trawls during the summers of 1962, 1963 and 1964. Waters explored during the 3 years included those of the northern Gulf of Alaska between Cape Sudkling (lat. 60° N., long. 144° W.) and Unalaska Island (lat. 54° N., long. 167° W.). Some preliminary explorations were made in portions of the Bering Sea. During the studies, 539 trawl drags (ranging from 30 to 60 minutes each) captured over 100,000 pounds of shrimp. Pink shrimp (*Pandalus borealis*) made up 72 percent of the total catch, and averaged 90 shrimp per pound. A larger species, side-stripe shrimp (*Pandalopsis dispar*), made up 18 percent of the catch. Smaller amounts of other species were taken. The highest average catch rates were made in the general vicinity of the Shumagin Islands where 82 trawl drags of about 30 minutes averaged over 650 pounds per drag. Observations were made on the occurrence of other species including king, Dungeness, and tanner crabs. During 1963 and 1964, 56 percent of the fish species caught incidently included various types of flatfish; pollock, rockfish, and other species were important in the remainder.
51) Rathjen, Warren F.
Describes the exploratory fishing problems of the UN/FAO sponsored Caribbean Fisheries Development Program, 1965-1968.

52) Rathjen, Warren F., M. Yesaki and B. Hsu
More than 10 independent trawl fishing investigations have been conducted along the continental shelf of Northeastern South America during the last 25 years. The results of these investigations are reviewed.
The government of Surinam has operated the trawler COQUETTE for exploratory and production fishing programs along its coast for over 10 years. Fishing logs of the COQUETTE for the years 1963 to 1965, comprising a total of 2,717 drags, were examined.
The UNDP/FAO Caribbean Fishery Development Project vessel CALAMAR conducted trawl fishing explorations from off the coast of French Guiana to Venezuela. During 1967 and 1968, more than 400 trawl drags were completed by the CALAMAR.
The data collected by the COQUETTE and CALAMAR were analyzed for catch per unit effort to determine differences by area, year, season, depth and time of day. Differences in species composition of the catch with the above variables also were noted. The results of the COQUETTE and CALAMAR operations are compared.
With the trawl fishing explorations conducted to date as a background, the fisheries potential of the northeastern coast of South America is discussed.
53) Rathjen, Warren F. and J. Sullivan
1970. Whaling in the West Indies. Sea Frontiers, Vol. 16,
No. 3, pp. 130-139; The International Oceanographic
Foundation, 10 Rickenbacker Causeway, Virginia Key,
Miami, Florida.
Describes whaling from open boats in the Midward
Islands of the West Indies.

54) Rathjen, Warren F. and Benny C. C. Hsu
1970. Sea bob fishery of the Guianas. Dept. of Interior,
U.S.F.W.S., B.C.F., Wash., D.C.; C.F.R. Reprint 889,
Describes traditional fishing techniques for a
variety of estuarine shrimp.

55) Ruggiero, Michael
1960. Braided synthetic twines and their use in the New
England trawl fishery. Dept. of Interior, U.S.F.W.S.,
B.C.F., C.F.R., Wash., D.C.; Sep. 582, Vol. 22, No. 3,
pp. 6-11.
The history of the use of braided synthetic twine
by the fishing industry is traced. The construction and
characteristics of braided twine are discussed. The
avantages of synthetic twine in the New England trawl
fishery are described.

56) Ruggiero, Michael
1961. The surf-clam fishery of New Jersey - Equipment
Note, No. 9, Dept. of Interior, U.S.F.W.S., B.C.F.,
The surf-clam fishery of New Jersey as of 1961 is
briefly discussed. Utilization and location of the
fishery are covered with an emphasis on the fishing gear
used. Descriptive photographs accompany the text.

57) Smith, Keith A.
1955. Use of an electrical attracting and guiding device
in experiments with a "fish pump". Dept. of Interior,
U.S.F.W.S., B.C.F., C.F.R., Wash., D.C.; Sep. 392,
Vol. 17(2).
Results of fishing experiments using gear designed
for pumping fish in combination with an electrical-
guiding device and an automatic light dimmer show that,
in calm waters, small herring (and probably other small
phototropic fish) can be attracted and caught in a pump
by use of a light for attracting them and a direct-current
pulsating electric field for guiding them. These fish are not repelled at the outer fringe of the electric field. Instead, when attracted by the light they enter the field to a point where they involuntarily swim to the anode and are swept into the pump by the flow of water.

The gear took fish most successfully when both the underwater light and pulsating field were in operation. Small catches, however, were made using light alone. Sudden movement of the light and electrode assembly frightened the herring away. Thus, movement such as that caused by the rolling of the vessel prevented the herring from approaching the gear closely. Dimming the light did not cause herring to approach closer. The best catches were invariably made in the early morning during the approach of daylight.

Further work in attracting and guiding fish to a point of capture in the seas might be implemented by the use of light of the proper wave length and by sounds of proper pitch and intensity. More effective use of white light and an electrical field can be made by use of a better electrode design and a more stable support for the attracting and guiding assembly.

This article reviews the conventional types of fishing gear and methods and points out some of their inadequacies. Special types of gear were tried to improve catches during these special conditions. The gear and methods used are described as well as trial fishing and the results.

Since its initiation, nearly a century ago, the Maine sardine industry has been dependent upon passive types of gear -- weirs and stop seines -- for the capture of its basic raw material, the Atlantic herring.
(Clupea harengus harengua). Such gear, although effective in capturing inshore schools and in incorporating the necessary provision for holding the live fish for several days, is not effective in coping with the schools when, as often happens, they remain in deeper water offshore. Failure of the herring to move inshore has often resulted in cannery supply shortages.

Realizing the need for a more active and far-reaching type of gear, the U. S. Bureau of Commercial Fisheries began, in 1955, to experiment with other types of gear. Research activities were largely based on the premise that, since the herring are easily-frightened fish, a device that would frighten them might also be used to drive or guide the fish from deep water to the areas where they could be taken in the weirs and stop seines. In the past three years, the usefulness and effectiveness of an air-bubble curtain for driving and guiding the herring has been demonstrated to the industry, and at least 12 air-curtain units have now been constructed by members of the Maine industry.

Essentially, the air-bubble curtain consists of several lengths of 1/2- to 3/4- inch diameter polyethylene pipe, weighted to lie on or near the sea bottom, and from which columns of bubbles escape through 1/64-inch holes bored in the pipes at regular intervals. Air is supplied by a shipboard compressor. The bubble curtain is used to surround the fish and slowly draw them to the seines, or to otherwise direct them in the direction of the weirs and seines by cutting across their normal path of movement.

60) Smith, Keith A.

Exploratory herring fishing operations were carried out along the Maine coast during the summers of 1955 and 1956 using the research vessel Theodore N. Gill and the chartered small otter trawler Metacomet. The coastal and Gulf of Maine waters were sounded and fished with a lampara seine, gill nets, midwater trawls, and otter trawls. Inshore explorations located zero-year-class herring in the bays and inlets and traced
their development in these areas until they became sardine-sized fish in late fall. Sardine sized and large herring were found occupying an ocean-bottom habitat during the winter. A scattering of large unschooled herring was found in coastal waters during the summer of 1956.

The use of air-bubble curtains for guiding herring schools to point of capture was first tried by the U. S. Fish and Wildlife Service in Maine, U.S.A., in the fall of 1957, and has been reported on the Commercial Fisheries Review of the U. S. Bureau of Commercial Fisheries. The air-bubble curtain was used to intercept the movement of young herring (Clupea harengus) and lead them to stationary weirs, traps or seines fencing off a bay. The most satisfactory air-compressing unit consisted of a three-cylinder single-stage compressor, 196 ft³/min at 80 psi, driven by a 52-hp diesel engine. The required power input is about 25-30 hp. The air compressor has a 30-gallon air receiver and a sea water-cooled compressed air aftercooler. To lay out the air curtain, a polyethylene pipe was used. Being flexible, it can be wound on to a reel and minutely small holes can be easily drilled in the wall of the pipe to provide air outlets; furthermore, it is inexpensive, light-weight and easy to handle. The disadvantages are that it is buoyant and must be weighted to sink, melts at relatively low temperature so that an aftercooler is required to remove heat of compression from the air. The above compressor could supply air for 2,400 ft of air curtain, emanating from 0.016 inch holes in the pipe, or else 600 ft of a heavier curtain achieved with 0.0312 inch holes, drilled in the plastic pipe at 1 ft intervals. A galvanized wire rope was attached along the pipe to sink it. In commercial fishing trials the air curtain was looped around the school of herring and the pipe was then towed slowly inshore by boats on each end, thus driving the school to within range of the stop-seine.
62) Smith, K. A. and H. E. Stubbs
A brief summary of early midwater trawl doors leading to the development of this use for the rotor devices is given. The developmental and testing steps for the technical basis of rotor lifts is given. A description of the rotor when incorporated into doors for midwater trawling is supplemented with a suggested alternate positioning of the rotor directly onto the net instead in the trawl doors.

63) Smith, Keith A.
This is the leading article in the section of the book titled "Fisheries in the future". In introducing the content, the author has grouped the under used species into loose groupings which reflect similarity of occurrence and probable best fishing methods. To orient the reader in respect to the possible potential value of each unused resource discussed, a general assessment of the resource size is attempted and the suitability of each species for use under present conditions is indicated.

64) Squire, James L., Jr.
Traces development of the deep water fishery for shrimp starting in 1952. Exploratory fishing by the N.E. Scovield and early catch results and regulations.

65) Squire, James L., Jr.
Description of early commercial purse seining in New England. The fishing activities of the Silver Mink, Santa Maria and Western Explorer are reviewed.

66) Squire, James L., Jr.
The use of aircraft in locating various commercial fisheries is discussed.

67) Squire, James L., Jr.
A discussion of tuna distribution based on relation to water mass and geographic positions.

68) Squire, James L., Jr. and Frank S. Mather, III
Explorations using tuna longline gear in the oceanic Northwest Atlantic, from off Cape Hatteras to east of Bermuda and north to near the Grand Banks are discussed. Exploratory catches by the research vessels Delaware, Crawford, Silver Bay, Shoyo Maru and Cap'n Bill III are projected to a theoretical catch rate of 100 ten-hook baskets of tuna longline gear.

69) Squire, James L., Jr.
Explorations of the oceanic Northwest Atlantic by the exploratory fishing vessel Delaware during the years 1957 to 1960, using sub-surface long-line fishing gear are discussed. Species dominance in this area changes from bluefin tuna to yellowfin tuna, Thunnus albacares, during the summer and early autumn.
Catch per unit effort ranged from zero to 20.8 fish (or 1,431 kg) per 100 hooks for bluefin tuna and 14.1 fish (or 568 kg) per 100 hooks for yellowfin tuna. A comparison is made between tuna occurrence in the vicinity of the Kuroshio Current in the Pacific and the Gulf Stream of the Atlantic.

71) Twohig, Patrick J., B. L. Griswold and Y. Kurlyandsky 1971. Performance of trawls used in joint US-USSR groundfish studies. In: Proceedings of the Annual Meeting, June - 1971. ICNAF Res. Doc. 71/117, Serial No. 2604, (B.g.20). The USA and USSR conducted a cooperative cruise in the autumn 1970 aboard the USSR scouting vessel Kvant for the purpose of measuring the performance characteristics of trawls used in the possible candidates for a new standard trawl. The cruise was divided into two parts. Part I of the cruise took place during the daylight hours from September 25 through October 1 in an area 25-30 miles south of Martha's Vineyard in water about 50-100 meters deep. The objective of this part was to measure the vertical and horizontal spread of six trawls (three USSR, two Canadian, and one US) under varying towing conditions. Part II of the cruise was conducted from October 2-10 in the same general area as Part I and the purpose of this part was to compare the fishing power of the USSR trawls.

of the National Oceanic and Atmospheric Administration, U. S. Dept. of Commerce, is described. Vital statistics for each ship are given. Vessel descriptions are accompanied by photographs. A brief text covering fleet activities and modernization precedes the vessel description.

73) Wilson, Peter C.
Small fishing vessels from Gloucester, Mass., have successfully fished subsurface bluefin tuna (Thunnus thynnus) on Stellwagen Bank in Massachusetts Bay using long-line gear especially adapted to inshore operations for large tuna. During the short season between mid-August and late October, boats 35 to 40 feet in length have made catches approximately 60,000 pounds per vessel.

74) Wilson, Peter C.
Bluefin tuna are seasonally abundant along the New England coast where they have been of minor commercial importance for many years. In 1951 the U. S. Fish and Wildlife Service began investigating that resource to determine whether a New England tuna fishery was feasible. The results of those investigations showed that several different species of tuna were present in the Northwest Atlantic beyond the U. S. Continental Shelf. The Fish and Wildlife Service sponsored purse-seine trials in 1951 and 1954, and the 1958-61 operations of a commercial vessel (with which the Service's Bureau of Commercial Fisheries cooperated) demonstrated that commercial quantities of bluefin tuna could be harvested in New England waters. During 1962 and 1963 the new tuna fishery had a purse-seine fleet of 16 United States and 2 Canadian vessels. The season lasted 5 months and the fishing area included all of the Continental Shelf from Virginia to Massachusetts. A skipjack resource was also discovered. In six years the Atlantic Coast tuna purse-seine catch rose to 9,000 short tons, including 3,000 tons of skipjack.
75) Wilson, Peter C.
The prevention of hook damage in long-line fishing by substituting aluminum for copper as a sleeve material is discussed.

76) Wilson, Peter C. and Martin R. Bartlett
This report summarizes the results of longline explorations for tunas and swordfish by the Bureau of Commercial Fisheries and the Woods Hole Oceanographic Institution in the Northwestern Atlantic from March 1957 to June 1965. Fishing log data from 31 exploratory cruises are summarized in 12 monthly tables that give the data, time, position, number of hooks fished and catch for each longline set. The total and monthly fishing effort (number of longline sets and hooks fished within each 1° latitude and longitude square) is shown by 13 figures. Similar figures show the total and monthly average and maximum number of bluefin caught per 100 hooks within each 1° square. Two figures show the monthly catch rates for blackfin and skipjack tunas by 1° squares.