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GUIDEBOOK FOR BIOMETRIC ACTIVITIES IN OCEAN PULSE

1. Introduction:

Ocean Pulse is a program designed for continuous monitoring of and associated

research necessary for forecasting the condition of coastal waters in the Northeast

region. The goal is to determine the extent to which man's activities, particularly

chronic and acute pollution and habitat modification, are affecting the elements

of our living resources. The program provides an integrated marine environmental

assessment, which an interdisciplinary base incorporating traditional and
)

innovative measurements of resource status.

The Ocean Pulse activity will most likely proceed incorporating procedures

analagous in part to that of medical science. The first phase is that of examination.

The field and laboratory data, including derived indices, will describe conditions

of habitat~ ranging inshore to offshore, and under various impacts, short term
t'

and chronic. Chemical, physiological and population indices will be examined to

determine symptoms associated with various impacts. At this point statistical

" _.~cures will determine associative linkages and possibly define symptoms

heretofore undescribed, (i.e. synergistic effects). The NMFS can be expected

to perform in producing data files, analyses and reports including diagnoses and

advise on recommendations for treatment. Treatments will come under the domain

of government agencies responsible for pollution abatement. The prognosis will

rest with public support.

All disciplines in Ocean Pulse collect numeric data from controlled field

and laboratory experiments as well as observations and surveys at sea. The data

will be accumulated as large sets of physical, chemical and biological variables

to include among others physiology, pathobiology, genetics, benthos, oceanography,

fisheries. The data sets will require appropriate ·sampling schemes throughout



the experiment or survey, a requirement particularly crucial at the planning

and initial stages. They also demand a proper data mangement system to reach

the objectives of monitoring and predicting. Only with an appropriate sampling

scheme accommodating for some desired level of precision and analyzed with proper

statistical procedures can data lead to meaningful interpretation and conclusions.

This report concentrates on general topics of statistical procedures and

their direct applications in the Ocean Pulse program. However, it is worthwhile

to review first the .requisites for a sound experiment. Next, the selection of

a sampling frame and various statistical methods both parametric and non-parametric;

analysis and interpretations for the application within tasks of individual

disciplines follow. Integration and synthesis for an appropriate monitoring

system in· terms of an ecological and environmental assessment point of view and

a feedback system' is described, critical for realignment of initial objectives.

lastly a data flow system is discussed.

2. Prerequisites:

In collecting basic information from samples at sea in the Ocean Pulse

Program, an experiment may be defined as a directed course of action aimed at

answering through scientific procedures one or more carefully framed questions.

In a controlled laboratory experiment the experimenter manipulates at least

some of the factors under the study and then observes the effects of his action.

Suppose, for example, we have survey and laboratory measurements of biochemical

enzyme responses observed under similar environmental stresses on sea scallops.

Then, both should be related to each other after establishing monitoring and

diagnostic criteria. We can assume the nature of the basic field and controlled

laboratory data are linked by similar environmental stress. Without this linkage,

there is little to say in interpreting or synthesizing results and only with it,

can the experiment succeed in accomplishing the objectives of the proposed

project.



There are certain characteristics an experiment must have to succeed.

These are requisites of any sound experiment and to achieve these r~quisites,

statistical design of experiments can provide some direction and an appropriate

tool for soundness. These are summarized in Table 1 (Natrella, 1963). Recommended

references on the general principle of experimentation are Anderson and Bancroft

(1952), Cochran and Cox (1957), Cox (1958), Natrella (1963), Wilson (1952) and

Yates (1960).

2.1 Establishing Objectives:

The objective is a statement in the form of questions to be answered, the

hypothesis to be tested or, of the effects to be estimated. The statement should

be lucid and specific. Common faults are vagueness and excessive ambition, i.e.,

that the program cannot be accomplished within the limitations of time, money,

and availability of material, personnel, or other constraints. Establishing

an objective is more than writing down a few key words or parameters. A proper

setting for objectives depends on purpose, tempered by the physical restrictions

,e process of taking measurements and other constraints. An objective should

i"elude an account of the range over which generalizations or statistical

inferences are to be made. The objective should be described in detail, and an

outline of the analysis should be constructed. Then following the details of

how the experiment is to be conducted and analyzed.

As examples we should consider the following -- an initial field survey at

sea designed to furnish answers to the questions of desired sample size and

precision? Are the results of the controlled laboratory exposures with heavy

metals to measure stress upon marine organisms similar to levels expected to

be found at sea? Can results be used to explain facets of theory not adequately

understood' before? Are we solely interested in estimates of primary productivity

around some particular sites? If not, how will tests of significance be

determined for links in determining trophic food chain dynamics?



Once we establish the objectives and decide what we are going to do in the

experiment, then observations through some sampling system will provide an

estimate of the population being studied. Our ultimate goal is to have small

variance (experimental error), bias (systematic error), with mean estimates

about the same as the true value. The "extent of bias and variance in the

experiment are to a large extent independent. We can have estimates "having

small variance, i.e. differ little among themselves, but with a large bias, so

that all the estimates differ greatly from the true value. Bias may arise from

a poor method of analysis, but more likely from a poor choice of samples, or

from the method from which the measurement or counts are made from the sample.

If the size of replicates or samples increases, then the variance will be

reduced, but the bias will remain unchanged. This leads to the discussion below

on replication. However, the bias can only be detected and hence eliminated by

careful examination of the whole sample procedures from beginning to end and must

utilize the concept of randomization.

2.2 Replication:

It is seldom that only one observation in an experiment is regarded as

sufficient. Repetitions are considered desirable to confirm results and to form

a basis for estimating precision. The precision is concerned merely with

repeatability of measurements. ',This process of replication is especially necessary

when the parameter under study is not precisely defined, and is subject to wide

variations. When this applies, large numbers for testing may be required, but it

is also desirable to make check runs to determine the experimental errors

(random errors).



Three main sources of experimental errors may be distinguished. The first

is inherent or intrinsic variability in the experimental material to'which

the treatment are applied. The second is lack of uniformity in physical conduct

of the experiment, i.e. failure to standardize the experimental technique. Third

is the size of the experiment, in the sense of either providing replicates or

including additional treatments.

Whatever the source of the experimental error, replication of an experiment

~ steadily decreases the associated error. But precautions have been taken to

ensure that one treatment or factor is no more likely to be favored in any

replicate than another, so that the errors affecting any treatment tend to cancel

out as the number of replications is increased. The rate at which the experimental

error is reduced is predictable from statistical theory. One should avoid two

common mistakes: 1) require more precision than the purpose warrants, and 2)

obtaining insufficient precision for the purpose. In the first mistake, the

experiment will cost more money than is necessary. In the second mistake, the

~ experiment fails to achieve significance.

The basic quantity used to measure experimental errors is the error variance

per experimental unit, which is defined as the expected value of the square of

the error that affects the observations for a single experiment unit. The

square root of this quantity is called the standard error per unit, i.e.

standard error =
error variance per unit

no;' of'replicates

Hence, to estimate the number of replicates, we need only the error variance

per unit (which is usually obtained from the analysis of variance) and the desired

or'required standard error (precision). Further readings for this are in

Cochran and Cox (1957 and Cox (1958).



2.3 Randomization:

One way to eliminate bias is the use of the principle or randomization.

The use of a strictly random choice (not some process such as guessing numbers

which the experimenter perceives as random), has two aims. The first is the

essential ·one of ensuring that the inevitable prejudices and preferences of the

experimenter do not bias the experiment. The second aim is to provide a

mathematically sound bias for calculation of approximate probability of error,

as well as a statistically meaningful inference for interpretation of the results.

The basic operation of randomization is that of arranging in random order a

series of numbered objects. In the more complicated designs this process must

be applied several times. An essential feature of randomization is that it be

an objective impersonal procedure. Arranging things in random order does not

mean just a manipulation into some order that looks haphazard. Methods of

randomizing include rolling dice, shuffling numbered cards or drawing numbered

balls out of a well-shaken bag. The main method is the use of numerical random

tables. It is used as follows: choose a starting point without looking at the

tables. For example, write down a number for the page, a number for the row,

and a number for the column block,. Similarly we can also choose multi-digit

random numbers according to the experimental unit or treatment for which we want

. to establish a random order.

The positive advantages of randomization are assurances that a randomized

experiment is more accurate than a corresponding nonrandomized one in which an

unskillful assignment to treatments to units leads to systematic bias. Randomization

can prevent human bjas from entering in the selection of the sample and in making

the assignment of treatments or observations. It also assures that the random

error of the estimated treatment effects can be measured and their level of

statisti~al significance examined. The concept of randomization was introduced

by R. A. Fisher and further readings are in Fisher (1947) and Cox (1958).



Table 1. Some requisites and tools for sound experimentation.

Requisites Tools

1. The experiment should have carefully de-
fined objectives. .

1. The definition of objectives requires all of
the specialized subject-matter knowledge of
the experimenter, and results in such things
as:

n,

(a I
(bl

(c)

Choice of factors, including their range;
Choice of experimental materials, pro­
cedure, and equipment;
Knowledge of what the results are
applicable to.

2. As far as possible, effects of factor should'
not be obscured by other variables ..

3. As far as possible, the experiment should be
free from bias (conscious or unconscious).

4. Experiment should provide a measure of
precision (experimental error).

5. Precision of experiment should be sufficient
to meet objectives set forth in requisite 1.

"'

••.. l·

2. The use of an appropriate experimental pattern
helps to free the comparisons of interest from
the effects of uncontrolled variables, and'
simplifies the analysis of the results.

3. Some variables may be taken into account by
planned grouping. For variables not so taken
care of use randomization. The use of
replication aids randomization to do a better
job.

4. Replication provides the measure of precision;
randomization assures validity of the measure
of precision.

5. Greater precision may be achieved by: Refine­
ments of technique; experimental pattern
(including planned grouping); replication.

r
~~

...... 1. .. 4" . I',
,,"~~'" .:.: ". ,{..... ';':.~":'.'; 'f



3. Sampling

Sampling is a method that guides quantitative studies of content, behavior,

performance, material and causes of differences. Every sampling system is used

to obtain estimates of certain estimates of certain measurements or properties

of the population being studied, and the system can be judged by how.good the
.

estimates obtained are in the sense of minimizing errors and bias. A good

system provides a frequency distribution with a small variance and bias with the

.estimated mean close to the true value. The requirements for precision and

randomization have to be fulfilled.

To extend valid generalizations from samples about characteristics of the

population in which we are interested, the samples must have been obtained by a

suitable sampling scheme. Such a scheme ensures two basic conditions: 1) all

possible samples associated with the sampling scheme must bear a known relation

to the characteristics of the population (if the population is small, it is

sometimes convenient to obtain the information by collecting the data for the

'.hole of the population); 2) generalizations may be drawn from such samples in

accordance with the validity of the mathematical theory of probability. If a

sampling scheme is to meet these two requirements, it is necessary that the

selection of the individuals to be included in a sample involve some type of

random selection, that is,· each possible sample must have a fixed and determinate

probability of selection.

There are excellent reference books for sampling methods. Yates (1960), is

more practical and readable than some of the popular ones, and contains a list

of references over all disciplines. For fisheries and marine science, recent

publications are available; for instance, Gulland (1966, fisheries biology),

Gonor and Kemp (1978, quantitative ecology), Stofan and Grant (1978, phytoplankton),

Jacobs and Grant (1978, zooplankton), Swartz (1978, macrobenthos), Mearns and Allen



(1978, small otter trawls), Grosslein (1970, groundfish survey), Saila (1900,

sequential sampling for benthos). Excerpts from Grosslein (1970) appear in

Appendix I.

3.1 Simple Random Sampling:

The most useful type of selection is simple random sampling. This type of

sampling is defined by the requirement that each individual in the population

has an equal chance of being the first member of the sample; after the first

is selected, each of the remaining individuals in the population has an equal

chance of being the second member of the sample; and so forth. For simple random

'sampling, it is not sufficient that each individual in the population has an

equal chance of appearing in the sample, but it is sufficient that each possible

sample has an equal chance of being selected.

A useful and widely applicable method of obtaining a truely random sample

is by use of random numbers as described earlier. The individuals in the

population from which a sample is to be drawn are allotted numbers, and those
..

to be sampled are determined by reference to a table of random numbers. For

instance, if a sample of 10 clams or fish has to be taken from a population of

;"0, and the first 10 random numbers may be, say, 57, 21, 79, 29, 45, 86, 3, 17,

18, and 93, the individuals corresponding to those numbers will be selected.

If the number of individuals in the population is not exactly 100, some random

numbers occurring will not correspond to numbers to be discarded. For example,

if we want to have a sample of 10 from 24 fish, we consider only random numbers

ranging from 1 to 24. Two or more digits may be ascribed to each individual,

so that the first unit has, for instance, numbers 01 to 04, the second, 05-08

and so forth, the 24th has 93-96, and numbers 97-100 are not used. Or instead

of selecting all the units in the sample individually from the random number



table, units may be taken at regular intervals systematically, e.g. every

third or seventh of which the first one is chosen by random number., In other

words, if the randomly chosen number is'three, then we choose for the sample

every third individual to reach the required sample size.

If a randomization process is not employed, then it is likely that all

individuals in the population will not have equal chances of selection in the

sample. If we just "grab a handful" the individuals in the handful almost always

resemble one another on the average more than do the members of a sample chosen

with randomiz~tion process. Cochran, Mosteller and Tukey (1954) pointed out

that a "grab"l sample tends to underestimate the variabi1 ity in the population.

We should have to overestimate it to obtain valid estimates of variability of

"grab" sample means by substituting such an estimate into the formula for

variability of means of simple random samples. Thus, using simple random sample
,

formulae for "gr)y sample means introduces a double bias, both parts of which
'~/

lead to an unwarranted appearance of higher stability.

Now suppose that we draw a sample of n units from a population of N units

i~ these units from 1 to n in order of which they are selected. Then a sample

of n independent random individuals is taken with values Xl' Xz, Xn, the

resulting estimate of the mean value per unit in the population is:

n
- _ 1 (Xl + Xz + ••• + xn) _ 1 1: Xl'
X - n . - n ;=1

variance of x is expressed by:
- N-n S2var(x) = - ­N n

and the

n
__ 1 .1: (x

l
,-x)2

where S2,= sample variance =-rn- I 1=1

Tbe factor of N-n is derived from the basic sampling scheme without replacement,
n

and for further details and proof, one should consult with Cochran (1977, p. 23).



The above precision of a sample estimate (variance of the mean estimate)

or standard error is a measure of absolute error. However, if we deal with

precision of a standard error of the esttmate over the value being estimated

(symbolically expressed by var(x} /x1, then it is expressed in terms of a

relative preci'sion of a sample estimate. It is referred to as "the coefficient

of variation". Yates (1960) supported the formu1 a for the sample size determi nati on

in a random sample as:

n = t var(x~/x)2

3.2 'Stratified Random Sampling:

In stratified rand~ sampling, the population is subdivided into groups or

"strata" Defore selection of the sample. These strata may either all contain the

same number of units or differing numbers of units. If a uniform sampling fraction

sc, the same fraction of the unlts of each stratum is included in the sample,

the units selected being chosen at random from all the units within each stratum.

A stratified sample is thus equivalent to a set of random samples on a number

of sUDpopu1ations, each equivalent to one stratum.

The increase in precision and bias reduction of sample estimates accomplished

by stratification depends on the degree of homogeneity that is achieved within

strata.· In other words, the amount of the variability in the characteristic

Deing estimated is reflected in the differences among the strata. This in turn

depends on flow effectively strata have been defined.

In estafilishing a·stratum, all information could help classify members of the

population into groups which differ from one another with respect to the

characteristic being measured or with respect to the cost of collecting data.

Each. stratum is then sampled independently, and estimates obtained for each stratum.



These can then be combined to give the estimate for the whole population. The

variance of this estimate will also be obtained by combining the variances

of the estimates within the individual strata. Since the strata are relatively

homogeneous. the variance within strata will tend to be small. and possibly the

variance of the combined estimate will be smaller than the variance in the

population as a whole. This is the rationale for employing stratification

procedures in the sampling.

The following steps are required for the stratified random sampling scheme:

1) defining the strata to be utilized; 2) determining the size of sample to be

taken from each stratum; 3) selecting the sample from the strata as defined; 4)

calculating the estimate from the sample; and 5) evaluating the reliability of

the sample estimate with variance estimates.

Suppose the population consists of N individuals. Ni is the i th stratum
I

where N = E • Ni. and a sample of Nl. N2' •..• NI units are taken from the I
i=l

'~rata respectively. Let Xij be jth values of quantity in i th stratum to be

estimated (e.g. length of fish. amount of enzyme. etc.) with j = 1. 2•... ni.

The estimated mean value Xi in the stratum is:

ni
- 1 E XXl· - ij- iii j=l

and an unbiased estimate of the mean value in whole population is given as

the weighted mean of the means of the individual strata (the weighting factor

being the total numbers in each stratum)
I

- __1 E Ni Xi
x - N i=l

If the variance within the i th strata is an extension of simple ramdom sampling

var(x
l
.) = _1 (Ni-nj) S.2

ni Ni 1



where Si 2 =

E
j (xij- xi)2

thE!1we have an unbiased estimate of the variance of x for the overall strata

expressed by:

var(x) = _1N2

= _1
N2

I
E

i =1
Ni [_1 (Nj-nj) si 2 ]

n. N.
1 1

= _1
N2

I
E Ni (Ni-ni) _1

i=l ni

To determine the sample size in a stratified sampling scheme, the values

of the sample size ni in the respective strata are expressed by Neyman (1934)

n'1 =
n

Ni var(xi)
I
E Ni var(xi)

i =1

n =

Although the above equation give the ni in terms of n, we do not know what n has.

~ solution depends on whether the sample is chosen to meet a specific or desired

variance of the stratified mean (v). If v is fixed, and we substitute the

optimum ni in the formula for var(x), then we have an optimum allocation of n as

E N'
i (NL)2 [var(xi)]2

1 EN'
V + N i (NL) [var(xi)]~

Suppose we minimize the variance of the estimate x, var(x), for a specified

cost of taking the sample or to minimize the cost for a specified value of var(x).

The simple cost function is of the form

cost = C = Co + E C. n.
ill

where Co represents an overhead or initial cost for a sampling scheme, and Ci

is cost per unit varying from stratum to stratum so that the cost is proportional

to the size of sample.



Then, the optimum size of sample is:

E
n = (C-Co) i [Ni var(xi)/I Ci]

E
i Ni var(xi) -I Ci

and
n =

Further readings in detail for the optimum allocation problems and the sample

size determination in the stratified random sampling scheme are referred to in

books by Cochran (1977) and Hansen, Hurwitz and Hadow (1953). The applications

for NMFS groundfish survey and its variability estimates with the stratified

random sampling method are referred to in Grosslein (1971) and Hennemuth (1976).

An interesting application for the structure of New York Bight benthic data

using post-collection stratification of samples based on the physical character­

istics of each grab sample rather than classical spatial strata classification

is given by Walker, Sai1a and Anderson (1979). Excerpts of this paper are

given in Appendix III.



4. Statistical Methodology:

Modern statistics provides research workers with knowledge. However, the

extent of statistics makes it difficult to define. It was developed to deal

with those problems where, for the individual observations, laws of causes

and effect are·not apparent to the observer and where an objective approach is

needed. In such problems, there must always be some uncertainty about any

inference based on a limited number of observations. Hence, statistics is the

science, pure and applied, of creating, developing, and applying techniques

such that the uncertainty of inductive inference may be evauated.

4.1 Parametric Statistics

A parameter is a measure of some characteristic of a statistical population.

For example, the mean and the variance are two such measures which occur in a

normal (bell-shaped) distribution. Statistical methods which rest on particular

assumptions about the forms of distribution and their parameters are called

parametric methods. The most frequently assumed distribution form is normal.

For many years the normal distribution has established a pre-eminent position

in statistical theory. It deserves its position on two grounds. First, a large

number of variables, including sample statistics such as means, appear to be

distributed normally or nearly so. Second, non-normal distributions often

can be readily transformed to normal form.

4.1.1 Linear Regression Analysis

4.1.1.1 Simple Regression

We consider the problem of statistical inferences which can be made

regarding the variability of a dependent variable, y, relative to an independent

variable, x. The y's can fluctuate from sample to sample, for example the

measurements of fish physiological stress, y (e.g. enzyme level) are affected

by the amount ,of contaminants, x. Furthermore, the x's will also be variable



subject to random fluctuation. As another example, we may wish to examine

the rate of primary productivity, y for different environmental variables, x

of nutrients observed.

Regression has many uses. Perhaps the objective is only to learn if

Y depends on Xi or prediction of y from x may be the goal. Some wish to

determine the shape of the regression curve. Others are concerned with the

error in y in an experiment after adjustment has been made for the effect of a

related variable x. If you have a theory about cause and effect, employing

regression can test this hypothesis. I
I

To satisfy these various needs an extensive account of regression method

is required. If a variable y is a linear function of a variable, x, we may have

y = a + llX +E

where E represents some residual or random errors, the amount of y not accounted
\

for in the regression on line of yon x. We postulate that the regression linE)'1

is selected so that resi dual s are of a random nature and uncorrel ated with each

other, with a usual added assumption that the E are J:lormally distributed with

mean 0 and variance 2 (Figure 1). Suppose we consider both variables (x and y)

are subject to an error measurement which has a joint probability distribution

at (Xl, Yl). It is represented by the "mounds" centered over the true point

(Figure 2). Similarly, the points (X2, Y2) and x3' Y3) are demonstrated.

To estimate the relationship between the y and x variate, n simultaneous

observations will be obtained on y and x, i.e.:

Yl,Y2,···Yn

Xl_ x2,···xn
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Then. we can write each observed value Yi' for ith observations as
~

y. = y. + e l·1 1
~

where Yi and ei are estimates of Yi and ei'

Y

x

Figure 3. True and estimated regression lines.

For a given observation (Xi. Yi) the true error is Ei. the estimated error by

ei in the above figure. In order to obtain the "best" linear fit to the data,

it is reasonable to make the e's as small as possible (Figure 3). Some choices

are available to make the e's small;

1) minimize the sums of the absolute values of the e

.. ) minimize the sum of squares of the e. Method (2) (Called the "method of

least squares") is probably the easiest to apply and has certain optimum

properties.

Mathematically, we can express the minimization of sum of squares of the

e's as Mjn.[~ el = .(Yi-Y;)2J so that
1 1 1

t(y.-Y.)2 = t[(y.-Y) - (Y.-Y)J2
1 1 1 1

= E[(y·-Y)2 + (Y·-Y)2 -2(y.-y) (Y.-y)]
1 1 1 1

= t(Y._Y)2 + E(y.-Y)2 -2E(Y·-Y) (;:-y)
1 1 1 1

The third term can be rewritten as

-2E(Yi-Y) <.y;-y) = -2E (y;-y) [b E(Xi-x)J



It is because. for example. in the case of simple regression (one y and one

x are linearly related). i.e.

y1·=a+Bx.+l:.
1 1

Yi = a + b Xi and since a = y -b x

= (Y-bx) + b xi

=Y+ b (x.-x)
1.

and Yi-Y = b(xi-x) ••.••.••••.....••................•...........•... *

One step further. we know

b = --=..l:(..:;X'-Li_-;(;.:.).........(y.....;>---....1...) _
1:(Xi-x)2

b 1:(Xi-X)2 = l:(Xi-X)(Yi-Y) .....................................**

So. the third term of the original equation is expressed by:

-2 1:(Yi-Y)(Yi-Y)

= -2 1:(Yi-y)[bl:(Xi-X)] ..... (bY *)

= -2b l:(Yi-Y)(Xi-X)

= -2b21:(Xi-X}2 •....•..••.•. (by**)

= -2l:(Yi-Y)2 .•.••..••.••.•. (by*)

Thus. we have
2 •

1:ei = 1: (Yi -Yi )2

~ 1:(Y1'-y)2 + 1:(Yi-y)2 -21:(Y·_Y)2.. 1

= 1:(Yi-y)2-l:(Yi-y)2

Rearrange the terms. we have

t(Yi-y)2 ~ 1:(Yi-y)2 +t(Yi-y)2

i.e. (sum of squares) = (sum of squares ) + (sum of squares )
about the mean about regression due to regression



We can construct an analysis of variance (ANOVA) table in Table 2,

which indicates that the mean square error (MSE)

MSE = ss about regression
n-2

is an unbiased estimate of a2 and relate how.to test of regression (test of

regression slope; Ho:S=O).

It is also possible to obtain the exact probability distribution on the

estimates Yi' a. b,and thus. the confidence intervals for the predicted line

and the individual parameters. However, we will skip a detailed analysis. You

should consult one of the following: Anderson and Bancroft (1952), Draper and

Smith (1966). Natrella (1963), Snedecor and Cochran (1967), and Steel and Torrie

(1960). Ricker (1973) is an excellent reference for details of the functional

relation of linearregress-ons in fisheries research problems, particularly

in cases where x and yare both subject to random fluctuations.

The comprehensive ANOVA table and other statistics for the simple regression

are obtained by an ADP computer program (Dahlberg, 1969). The biomedical computer

program, BMDolR (Dixon, 1974) provides similar output for analyses, but has an

output difficult to read.. Dahlberg's program provides the plots of regression

and the analysis of the weighted regression if you have to utilize computational

weight factors.

To obtain a degree of confidence that the relationship is indeed linear,

a test of deviation from linearity may be derived. We must have more than one

value (ni) of y's for a given value of Xj'

Yll' Y12,···,Ylnl one nl repeat observation of xl

y~l. y~2""':2n2 are n2 repeat observation at x2

Yrl. yr2,···.y2.nr are nr repeat observation at xr



Then we can subdivide the quantity o! sum of squares about regressi~n (ss error)

to two terms of pure error and "lack of fit" sum of squares. The mean square

for pure error is expressed by:

Y ni
i 1: 1 j 1: 1 (Yij - Yi J2

52 =e r
1: ni- r
i = 1

ss about regression - s = lack of fit sum of squarese
The test of linearity is:

ss lack of fit/r-2 '" FF* = -"-"--'c=c:.:--"-'-""""'--'-"'--'-'=--_. ( r-2, 1: ni - r ) .
s2 I 1: n.-r
e i 1

If the test is rejected (i.e. F* statistics is greater than F table value

with r-2 and 1:ni -r degree of freedom) the linear regression model appears to be

inadequate. If the test is not rejected, the model presents no reason to doubt

the adequacy of linearity, and both pure error and lack of fit mean squares

can be used as estimates of cr2 • You should consult Draper and Smith (1966) for

details.

4.1.1.2 Multiple Linear Regression Analysis

Often it is more realistic and economical to be concerned with the joint

effects of a number of independent variables (Xi •... Xr) on a single dependent

variable y rather than examining each variable separately. As in the simple

regression, the simplest and most used functional relationship is a linear one.

The multiple linear regression model has the form of:

Yi • a + al xl, + a2 x2' +.•.• + a xr · + £1'
1 1 r 1



for i = 1. 2•.•. n and where Ei follows normal distribution with mean 0

and variance a2 • and Ei and Ej are uncorrelated each other.

The application of the least square technique is the same as described

for simple regression. We have to minimize

r n
E E (Yij - Yij)2

i~l j=l

. The ANOVA table is summarized in Table 3. The formulae for estimating parameters.

testing. and confidence limits are omitted. but one should consult Afifi and

Azen (1972) or Draper and Smith (1968).

In many regression situations. the experimenter does not have sufficient

information about the order of relative importance of the independent variables
~

Xl' x2.···xr in 'predicting the dependent variable y. Testing a hypothesis:

ai = 0 for each xi' i - 1.2 •... n does not reveal this ordering. Suppose we reject

the test on false conclusions that xl was the only variable of importance in

predicting y.

Then. our question is. which x variables are most important in determining

and predicting y. Usually no unique or fully satisfactory answer can be given,

but a few approaches have been tried: 1) standard partial regression coefficient

(see Snedecor and Cochran. 1967); 2) multiple correlation coefficient (see next

section), and 3) stepwise regression procedures (see Afifi and Azen, 1972 and

Draper and Smith, 1968).

The solution for the stepwise regression selects a single variable

Xi which best predicts y. The second step finds the variable xj which best

predicts y, with the given Xi' the first variable entered. In the steps that

follow, either: 1) a variable is entered which best improves the prediction

of y given all variables entered from the previous steps; or 2) a variable is
-



removed from the set of predictors if its predictive ability falls below

a given level. The process is terminated when no further variable improves

the prediction of y.

The computation of the stepwise regression is obtained by computer

program BMD02R (Dixon, 1974).

4.1.2 Correlation Analysis

4.1.2.1 Simple Correlation

In its most general sense correlation denotes the interdependence

between quantitative 0t qualitative data. However, in a more restricted sense
I

we will consider correlation as a measure of the degree of relationship between

the variables, independent of the units or terms in which they are originally

expressed. A closely related measure may permit you to state the relative

amount of variation which is explained by the estimating regression equation.
\

Recalling the expression ~t sum of squares (SS) in the previous section, the,

fraction of SS due to regression is expressed by SS about the mean. This is

called the coefficient of determinations in the regression analysis, i.e.

r2 = SS due to regression
ss about mean

= r (Xi - y)2
1: ( _)2

Yi - y
-
This coefficient is equal to the ratio of the reduction in the sum of squares

of deviations obtained by using the linear regression to the total sum of

squares of deviations about the sample mean y, which would be the predictor

of y if x were ignored. This provides a more meaningful interpretation of the

strength of the relation between y and x than the Pearson product moment, the

coefficient of correlation is:

1: (Xi-X) (Yi-Y)

It(Xi-x)2 I r(Yi-y)2

r =
----~----



Squaring both sides,

r2 = I1:{x;-xl (y;-ylJ'--2 _
1:(x1-X)2 1:{Yi-y)2

Dividing by 1:{xi -x)2 or 1:(Yi-y)2 we have

r = [1:(Xi-X) (Yi-Y)]/.1:(xi-x)2

1: (yi -y)2

reduction in SS attributable to x
SS Y about mean = corrected total SS Y

= [1:(xi-x) {Yi-y)]2/1:(Yi-y)2

1: (xi -x)2

= reduction in SS x
SS x about mean =

In addition,

r2 = [1:(Xi-X) (Yi-Y) ]

1:(xi-x)2

[ (xi-x) (Yi-Y)] = (by)(bxy )

. 1: (Yi-y)2

where byX and bxy are the regression coefficient slopes for the regression

~f y on x and of x on y. Thus, the product of the regression coefficient is the

square of the correlation coefficient, inversely the correlation coefficient is

the square root of the product of the regression slopes or their geometric mean.

Hence, if we are interested in testing whether there is a linear relationship

between x and Y (Ho: a = 0 where a is population correlation coefficient) a

statistical test is available (Snedecor and Cochran, 1967 and Steel and Torrie,

1960). In fact, this test is equivalent to testing that the hypothesis e = o.
While r provides a nice measure of the goodness of fit of the least squares

line to the fitted data, its use in making inferences concerning p would seem

to be of dubious value in many situations. This is simply because it is unlikely

that a phenomenon Y observed in natural science, especially marine environmental

science, would be a function of a single variable x. The larger reduction in



55 about regression (55 error) could possibly be obtained by constr~cting

a predictor of y based on a set of variables xl ,x2.... It leads toimultiple

and partial correlation which will be described below.

A few reminders concerning the interpretation of r are worthwhile.

1) if r = 0.6 as indicative of a linear relation between x and y, this

·value 0.6 would imply that use of x in predicting y reduces the sum

of squares of deviation about the prediction line by only r2 =0.36

or 36 percent;

2) r is a measure of linear correlation and x and y could be perfectly

related in some curvilinear function when the observed value of r

is even very low;

3) if the linear correlation coefficients between y and each of two

variables xl and x2 were calculated 0.6 and 0.7 respectively, it does

not follow that a predictor y using both variables would account for

a (0.6)2 + (0.7)2 = 0.85 or an 85 percent reduction in the sum of

squares of deviation. Actually xl and x2 might be highly correlated

and therefore contribute the same information for the prediction of y;

4) detecting linear correlation visually from plotted·points can be

difficult. An unfortunate choice of scale may hide a real correlation

or indicate a real one when none is present. A change of scale will also

change the slope of regression line. Further with an unfortunate choice

of scale, visual detection is further hindered by the fact that the

relation between rand r2 (proportion of the total sum of squares

expressed by regression) is not linear;

5) the correlation coefficient is considered only when variables x and y

are both subject to random errors.



4.1.2.2 Multiple Correlation

The simple correlation may not be what is desired in situat10ns where

the dependent variable is influenced by two or more independent variables.

Multiple correlations provides an analysis of the relations among two or more

predictor measures. It measures the closeness of representation by the regression

plane and may also be regarded as the maximum of the correlation coefficient

between the dependent variable and all linear functions of a set of two or

more of independent variables. The coefficient is usually denoted by R but is

regarded as essentially non-negative; the quantity R2 being the one which occurs

in practice as r2 in simple correlation.

R2 =SS due to regression
SS about mean

= l:(Yi-y )2

l:(Yi-y)2

Multiple correlation coefficients are strictly applicable only when

the total observation, that is (Yi,Xli,X2i ...Xpi) is subject to random error

as we have noted in the case of simple correlation. However, regardless of

randomness of the observations, these correlation coefficients may be useful

for computing and for other reasons. The reminders given for simple correlation

coefficients are all valid for multiple correlation coefficients. Recommended

readings for multiple correlation are Steel and Torrie (1960) and Kendall (1961).

The computations of multiple correlation coefficients are obtained

through computer program BMD02R (Dixon, 1974), stepwise regression analysis.



4.1.2.3 Partial Correlation

The simple correlation and multiple correlation coefficients are

measures of the closeness represented by the regression line or plane, i.e.

measures between two or more variables. This consideration leads us to

examine the correlations between variables when other variables are held as

constant, i.e. conditionally upon those other variables taking certain fixed

values. These are so-called partial correlations.

Suppose there are three variables. Then we have three simple correlation

coefficients among variables: variables 1 and 2, r12; 1 and 3, rl3 and 2 and 3,

Y23. The partial correlation is expressed as the correlation between variables

I and 2 in a cross section of individuals all having the same values of variable

3, r12 (3), i.e. the variable is held constant over variables I and 2 which are

involved in the correlation coefficient computation.

When we come to interpret a measure of interdependence, we often

meet difficulties, as when the first variable is correlated with second variables.

This may be merely incidental to the fact that both are correlated with another

variable or set of variables. This consideration leads to an examination of

the partial correlation. If we find that holding the third variable fixed

reduced the correlation between two variables, we make the inference that

their interdependence arises in part through the agency of a third variable.

If the partial correlation coefficient (rI2 (3)) is very small, we infer their

interdependence is entirely attributable to that agency, and conversely if the

partial correlation is larger than the original simple correlation coefficient

(r12 ) as a measure of dependence between variables, then we make the inference

that the third variable was obscuring the stronger correlation or making the

correlation.



A useful identity between the partial and multiple correlation

coefficients for the set of variables (y, xl' x2... xp) is
2l-Ry,x =(lr2 )(12 ).. (12 )

l>Xp - YXl -r YX2(X1) -r YXP( X1x2" xp)

where R2
y x x is multiple correlation coefficient between variable y and

, l' P
xl'···,xp, r2YX2(x1) and r2

yXp (Xl' x2' .•. xp_1) are the partial correlation

coefficients between y and x2 when xl is held as constant, and of y and xp when

other xl' x2••• xp_1 variables are held as constant. For instance, in the

above three variable case, we have

1 _ R2 .
1,2,3

where

r12 (3) = r12-r13 r23
.; (1-r13 )2 (l-r23 )2

A test of significance of the partial correlation coefficients, e.g.

r12 (3)' is available (Snedecor and Cochran, 1967 and Afifi and Azen, 1972).

BMDQ2R (Dixon, 1974) stepwise regression analysis provides computations of

the partial correlation coefficient. Utilization of the stepwise regression

analysis are referred to in Draper and Smith (1966) and Afifi and Azen (1972) .

. ,



4.1.3 Multivariate Analysis

As we have seen in the section of multiple regression and correlation,

observations on more than one random variable may be made for each individual

in the sample. The multivariate analysis is used rather loosely to denote

the analysis of data which are multivariate in the sense that each member

bears the values of p variables. In regression problems emphasis is placed

upon the relationship between the dependent variable on one hand and the set

of independent variables on the other hand. In other multivariate analyses,

however, all of the random variables are analyzed simultaneously as a random

vector having a multivariate distribution. Some multivariate methods are a

generalization of the univariate method, while others are unique to multivariate

analysis.

Most of the continuous multivariate analyses assume that the underlying

distribution of the random vector is a normal multivariate. The justification

of this assumption, similar to those in the univariate case, are: 1) many

observable phenomena follow an approximate multivariate normal distribution;

2) transformations of some or all of the components of the random vector

sometimes induce a multivariate normal distribution; and 3) the central limit

theorem for one random variable extends to the multivariate case, that is,

summations of many independent and identically distributed random vectors

approach multivariate normality.

Anderson (1958) classifies the multivariate analysis into the following

categories:

1. correlation (multiple and partial correlation analysis);

2. analogues of univariate statistical analysis (multiple regression,

multivariate analysis of variance, generalized T2-test for discriminant

function analysis;



3. problems of coordinate systems (principal components analysis,

canonical correlation analysis);

4. more detailed problems (factor analysis);

5. dependent observation (time series problems with serial correlation

analysis).

We will cover some of the selected topics including discriminant

function analysis, principal component analysis and canonical correlation

analysis. Correlation analysis and multiple regression analysis were discussed

earl ier.

4.1.3.1 Discriminant Function Analysis

Discriminant analysis is a procedure for estimating the position of a

measurement on a line that best separates classes or groups. The estimated

position is obtained as a linear function of the n measurement values. Since

one best line may not exhaust the predictive power of the test battery in

distingui shing among the cl asses, additi ona1 di scriminant functi ons, all

mutually orthogonal (in the sense that discriminant values are uncorrelated),

may be fitted.

The geometric interpretation of discriminant analysis can be seen for

the case of two groups and two variables with the assistance of Figure 4, in

which the two sets of concentric ellipses represent the biv~~iate swarms of

data for the two groups in idealized form. The variable x, yare slightly

positively correlated. Each ellipse is the focus of points of equal density

(or frequency) for a group (category). For example, the outer ellipSe for

group A might define the region within which gO percent of group A lies, and

the inner ellipse concentric with it might define the region within which 75

percent of group A lies. The two points at which corresponding ellipses

intersect define a strajght line II. If a second line I, is constructed

perpendicular to line II, and if the points in the two-dimensional space are



projected onto line I, the overlap between the two groups will be smaller

than for any other possible line. The discriminant function therefore trans­

forms the measurement values to a single discriminant value, and that value

fs the measurement's location along line I. The point b where II intersects

I would divide the one-dimensional discriminant space into two regions, one

indicating probable observation in group A and the other region for group B.

Notice that this figure depends on the equality of the two group variances.

If either the variance of x and y or the x,y covariance were different from

. the two groups, the ellipses for two groups would not have the same shape

and orientation, the boundary (line II) would not be a straight line. The

size of the two populations do not have to be the same, only teh variance and

covari ances.

We can consider, similar to the example above, the case of classifying

a two~dimensional observation into a one-dimensional normal population, to

classify a p-dimensional observation vector ~* = (x*1,x*2, ... x*n) into one k

multivariate normal populations with mean u. and variance-covariance matric. 1

E, i - 1,2, .•• k. Since x* is a realization of a random vector ~ = (xl' x2... xp)'

the results presented so far used all p variables xl' x2... xp to discriminate

between k populations. In many applications, however, it is desired to identify

a subset of these variables which best discriminates between the k populations.

This problem is analogous to that of stepwise regression analysis in an earlier

section, in which it was desired to identify a subset of independent variables

which best predicts a dependent variable.

This stepwise discriminant procedure is as follows. We first identify

the variable for which the mean values in the k populations are most different.

For each variable this difference is measured by one-way analysis of variance F

statistics and the variable with the largest F is chosen (or entered). On

successive steps, we consider the conditional distribution of each variable

not entered given the variable entered. Of the variables not entered, we



identify the variable for which the mean values of the conditional distributions

in the k populations are most different. T~is difference is also ~easured

by one-way analysis of variance F statistics. The stepwise process is stopped

when no additional variables significantly contribute to the discrimination

between the k populations. The computations are obtained by BMD07M (Dixon,­

1974), and details are referred to by Afifi and Azen (1972).

4.1.3.2 Principal Component Analysis

The method of principal component analysis is a general technique of

displaying interrelations ;in the data, but it is not a statistical technique

which can lead to a decision or a- hypothesis. This interrelationship, called

the dependence structure, may be measured by the covariances, or equivalently

the variances and-correlations between variables xl •.. xp' It is possible

to find a linear combination Y1' Y2'" .yq' (q<pJ of xl' x2.· .xp which generates

the dependence structure between x's. Then, the new variates y's which are

independent of each other account in tu~ for as much of the variation as

possible in the sense that the variance of y, is a maxil1llllll among all linearly

transformed variates, the variance of Y2 is a maximum among all linearly trans­

formed variates orthogonal to y, and so on. Then we have

P
Yl = l: al i xi

i=l
p

Y = l: aqi xiq i=l
P 2 P

withl: ali = 1, ••• , L a2 = 1
i=l i=l qi
p q

i 1and l: l: apj 1= 0 for i = 1, 2, •.. ,p, i +
i=l j=l -

j = 1, 2, ... ,q j :!:. j 1



q
1:

i=l
O ••
lJ

q
is maximized subject to the condition of 1: a2 = 1. Thus. the first principal

j=l lj

component explains 100 [var (Y1 )]/V percent of the total variance. Likewise

we have the first two principal components explain 100[var (Yl ) + var (Y2)]/V

percent of total variance. and so forth. Hence Yq is the qth principal

component. the variables Yl' Y2.·.Yq explain 100[ i var (Yj)]/V percent total

variance. And we found the set of eigenvectors farleach principal component.

To compare the contribution ofxl .x2..• xp to Yj we examine the quantities

aji/oi' i=l. 2•••• p and j=l. 2•..• q. and i the standard deviation, of xi' since

the correlation between xi and Yj is given byaji [var (Yj)]~/oi' Furthermore.

when the correlation matrix used. then comparison of coefficient aji is all

that is necessary. Hence'the larger the coefficient. the larger the contribution

of the variables xi .x2.•. xp to the principal component. Yl.Y2 •...Yq.



A geometric interpretation of the principal component with p = 2

is as follows. Each variable xl' x2 is represented by a coordinate axis

from the origin with mean u, and u2. Then, as eigenvector specifies its

direction and eigenvalue (variance of ylor Y2) specifies the length of an

axis of notional ellipse. In principal component analysis, we search for a

notation of these axes so that the variable y, represented by the first new

principal axes has a maximum variance. The variable Y2 represented by the

second of the new axes is uncorrelated with Yl' and has a maximum variance under

this restriction. Hence, the first principal component Yl =all xl + a12 x2 is

in the direction of the major axis of the ellipse, and second principal component

Y2 = lI21 xl + a22 x2 is in the direction of the minor axis of the ellipse

(Figure 5).

The computations are obtained by BMD01M (Dixon, 1974), and details are

referred to by Afifi and Azen (1972).

4.1.3.3 Canonical Correlation Analysis

canonical correlation analysis can be considered a generalization of

multiple correlation. In the multiple correlation problem, we have a set of

pvariables xl'

compound of the

x2•.• x and one variable Y; The objective is to find a linearp .

x-variables that has the maximum correlation with y. In canonical

correlation analysis, there is more than one y-variable, and the objective is

to find a linear compound of the y-variables. The most suitable class of

examples that comes are those where the x-variables are from a different domain

than the y-variables. for eKample, the x-variables could be background variables

referring to environmental data, and the y-variables descriptive variables

such as the abnormal stages of fish egg embryos. The problem would be to find

out whether there is some combination of background variables, that has high

correlation with a combination of the y-variables.



However, after that a pair of linear functions that maximally correlates

has been located, there may be an opportunity to locate additional ,pairs of

functions that maximally correlate, subject to the restriction that the

functions in each new pair must be uncorrelated with all previously located

functions in both domains. That is, each pair of functions is so determined

as to maximize the correlation between the new pair of canonical variables,

subject to the restriction that they be entirely orthogonal (uncorrelated) to

all previously derived linear combinations. The analytical trick is to display

the structure of relationships across domains of measurement in the canonical

analysis by reducting the dimensionality to a few linear functions of the

measures that have maximum covariances between domains subject to restrictions

of orthogonality.

The computations are obtained by the BMD09M (Dixon, 1974) and further

reading for the canonical correlation analysis see Cooley and Lohnes (1971).
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4.1.4 Variance Analysis

4.1.4.1 Analysis of Variance

The analysis of variance attempts to analyze the variation of a response

and to assign portions of this variation to each of a set of independent

variables (factors). The reasoning is that response variables vary only because

of variation in a set of unknown independent variables. Since the experimenter

will rarely include all the variables affecting the response in the experiment,

random variation in the responses is observed even though all independent

variables considered are held constant. The objective of the analysis of variance

is to locate important independent variables in a study and to determine how

they interact and affect the response.

Recall the subdivisions of the sum of squares in the regression analysis,

or the sample variance which explains the variability of a set of n measurements

. as the sum of squares of deviations. The analysis of variance partitions the

sum of squares of deviation, called the total sum of squares (corrected with

,"ean), say, 1: (y .. -:Y.. ).into parts, each of which is attributed to one of
i ,j lJ

the independent variables (factors) in the experiment, plus a remainder that

is associated with random error.

For cases. we can consider 1) when the independent variables are unrelated

"to the' response, it can be shown that each of the pieces of the total sum of

squares of deviations, divided by an appropriate constant. provides an

independent and unbiased estimator of 0
2• the variance of experimental error;

2) when a variable is highly related to the response. portion of its sum of

squares for the variable will be calculated. This condition can be detected

by comparing the estimate of 0
2 for a particular independent variable with that

obtained from the sum of squares for error using an F-test. If the estimate

for the independent variable is significantly larger. the F-test will reject a. .

hypothesis of "no effect for the independent variable". and produce evidence

to indicate a relation to the response.



The basic assumptions for the analysis of variance where tests of

significance are attained are 1) independent variable, factor, or treatment

effects are additive; 2) experimental errors are random, independent and

normally distributed about a zero mean and with a common variance. The

assumption of normality is not required ·for estimating components of variance.

In practice we are never certain that all these assumptions hold; often there

is good reason to believe some are false. Excellent discussions of these

assumptions, the consequences when they are false, and remedial steps are

given by Eisenhart (1947), Cochran (1947), and Bartlett (1947). Steel and

Torrie (1960), and Cox (1958) summarize this topic in a short but comprehensive

discussion.

There are some ways to reduce the effects of uncontrolled variations

on the error of treatment (variable or factor) comparison. Error control can

be accomplished by the experimental design. The general idea of choosing a

suitable design is the common sense one of grouping the units into sets (blocks),

all the units into a block being as alike as possible, the assigning the treatments

so that each occurs once in each block. All comparisons are then made within

blocks of similar units. The variation among units within a block is less than

that among units in different blocks, the precision of the experiment is

increased as a result of error control. Such blocks of similar outcome are

also called replicates. This kind of design is known as a randomized complete

block design. Sometimes two or more systems of blocking suggest themselves

and it may be desired to use them simultaneously. When the units are simultaneously

blocked in two ways this is called the Latin square design. If the units are

blocked in three ways simultaneously, the desing is called a Graeco-Latin

square design.



As the number of treatments in an experiment increases, the number

of experimental units required for a replicate increases. In most ,cases,

this results in an increase in the error, that is, in the variance in the

parent population. Designs are available where the complete block is subdivided

into a number of incomplete blocks such that each incomplete block contains

only a portion of the treatments. The subdivision into incomplete blocks is

done according to certain rules, so that the experimental error can be estimated

among the units within the incomplete blocks. Precision is increased to extent

that the units within an incomplete block are more uniform than the incomplete

blocks within a replicate. The. split-plot design, balanced incomplete block

design, partially balanced lattices and other designs within the incomplete

design are discussed fully in Cochran and Cox (1957), Federer (1955), and

Kempthorne (1952).

The second approach for an error control mechanism is the utilization

of concomitant observation. For example, if you study weight gains, it is

useful to consider initial weights. An essential condition has to be satisfied

in order that after use of the concomitant observation an estimated treatment

of effects for the desired main observation shall still be obtained. This

condition is that the concomitant observations should be unaffected by the

treatment. In practice concomitant observations should be taken before the

assignment of treatments to unit is made or the concomitant observations are

made after the assignment of treatment, but before the effect of treatment has

had time to develop. The supplementary observation value for any unit must

be unaffected by the particular assignment of treatments to units acutally used.

The analysis for the concomitant observations is called the analysis of covariance

which will be discussed in a later section. The design for the reduction of

error is discussed in detail by Cox (1958).
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Further details of procedures for analysis of variance are omitted,

however. excellent references include Cochran and Cox (1957), Cox j1958),

Federer (1955). Kempthorne (1952), Snedecor and Cochran (1967) and Steel and

Torrie (1960). Steel and Torrie is the best choice for developing an understanding

the analysis of variance.

The biomedical computer program (BMD, Dixon, 1974) package provides

the computations of analysis of variance: BMD01V for one way classification,

completely randomized block design, BMD02V for factorial design, BMD05V, BMD08V

and BM010V for any hierarchical designs including partially crossed, fully

crossed. partially nested, fully nested designs. BMD05V and BMD10V are more

flexible for setting up any design problem.

4.1.4.2 Multiple Comparison

In a completely random design (one-way classification model), an analysis

is designed to detect a difference in a set of more than two populations means

(Ho: ul - u2..= up)' The hypothesis Ho will be rejected if

F = ss of between treatment/p-1
ss of within treatment/

= MST
MSE

where MST = E ni(Yi-y.. )2/p- l
i

MSE = ; . (Yij- y.. )/; ni-p
1.J 1

Yij = the jth observation on the ith treatment

y. = ith treatment mean
1.

y •• = mean of all observation

Fa = critical value (F table value) based on (p-l) and E ni-p
i

degree of freedom for probability of a type I error, a.

If the Ho is not !ejected (F statistics for treatment is not significant),

the evidence is against rejecting the Ho and specific treatment comparisons



should not usually be necessary. In other words, if F is not significant,

the. treatment means are regarded as indistinguishable. However, if F is

significant (Ho is rejected), the ordinary t-test for the difference between

two means is applied to every pair of means. Where the difference of any two

means exceeds the critical value they are significantly different, i.e.

r:-. -] t ("" ) I MSE (! +!)LYi.-Yj. a, ~ni-p ni nj

where ta, (rni-p) is tabular value of t for error degrees of freedom. This is

called the least significant difference (lsd). The lsd is basically at-test

using a pooled error variance. Since the lsd need be calculated only once

and takes advantage of the pooled error variance, its use is seen to be a

timesaver as compared with making individual t-tests.

Since the lsd can be and is often misused, some statisticians hesitate

to recommend it. The most common misuse is to make comparisons suggested

by the data, comparisons not initially planned. For the tabulated confidence

levels to be valid, the lsd should be only for independent or nonindependent

comparisons planned before data have been examined. A valid test criterion

for planned comparisons of paired means, a criterion in considerable vogue

both past and present, used the lsd.

The uncritical use of the lsd and the need for other methods of making

multiple comparisons among treatment means, especially nonindependent comparison,

have led to several other tests, such as Duncan's new multiple range test,

Tukey's w-procedure (significantly different, hsd), Student-Newman-Keul's

test, Dunnett's test (comparing all means with a control) and Scheffe's

multiple contrasts test. Scheffe's method should not be used for paired

comparison, but it fits for tests of more complicated contrasts. The testing

procedures of other tests are very similar to each other. The references for

this topic are by Li (1964) and Steel and Torrie (1960). The computation for

Duncan's multiple test is obtained by BMD07V (Dixon, 1974).



4.1.4.3 Analysis of Covariance

It is possible to superimpose upon the simple linear regression model

a one-way analysis of variance model. This combination of analysis of

variance and regression techniques is called analysis of covariance. Analysis

of covariance arises in several situations, but mainly in two: 1) the variable

x is introduced to increase experimental precision or is inherent in the

problem and must be accounted for in the analysis. One very important

assumption in using the covariance method is that variation of the x value

is not due to the treatment; 2) the linear relationships are themselves the

object of study in several treatment groups.

Let us have available pairs of observations from several samples,

which may be arranged in an array as follows:

Sample from Sample from Sample from Totals
Population 1 Population 2... Popul ati on y x y

xll Y11 x2l Y21 xrl yrl

x12 Y12 x22 Y22 xr2 Yr2

xlnl Ylnl x2n2 Y2n2 xrnr Yrnr
Total xl. Yl. x2. Y2. ... . xr . Yr. x.. y ..

No. of Observ. nl n2 nr N

Means - - - -
xl. Yl. x2. Y2. xr . Yr. x.. y..

Often it is desired to test the null hypothesis of a common line of

the form against the alternative hypothesis of the form, i.e.

Ho : Yij = a + S (Xij - x.. )
Hi v + (xij xi. ): Yij = ai Si -



Within each sample a i and 5i are estimated by

nj

bi = 5:1 (Yij - ~i.) (Xij Xi)

-a
1
, = y. and

1.

ni
I:
j=l

(x .. - x. )2
1J 1.

The error ss about the ith individual line is

(SSE)i = (SS Total). - (SS Treat). = I: (Y'
J
' - Yi )2_b~ [E(X.

J
. -x. )2]. 1 1 j 1. 111.

Then. total error ss about 5 individual regression lines is

r
SSE = t (SSE) i

i=l
i
j

with N-2r degree of freedom.

Meantime, ss about the single line under the Ho. we have estimate a=Y .. and

b ~ ~ (y .. - y ) (x.. x) \
= ..:.1..........J'--_1~J'--_:...:..'--_l:.\dJ'---..:'-'-__---'/ I

I: I: (x .. - x )2
i j 1J. . •

and the total variability about the single line is

SST = I: I: (y., - y )2 - b2 [E E (x.. - x )2 ]
i j 1J • . i j 1J

With N-2 degree of freedom (d. f.). Consequently, we have the summary
.

table for analysis of covariance as follows:

Source SS d.f. F

Excess explained SST-SSE 2(r-l) (SST-SSE)/2(r-1)
by r lines SSE/N-2r
About r lines SSE N-2r

About single line SST N-2



If Ho is accepted, then we may regard the populations as having the same

linear relationship of y on x. If Ho is rejected, it may be that the slopes

Bi are the same, just the intercepts Cl i differed. In other words, the

regression lines may be parallel but not coincident. Thus, in some situations,

it is also desirable to have a test of the new hypothesis against the same

Ha, i.e.

He = y .. = Cl.+a(x .. - X. )
. 1J 1 1J 1.

Ha =Yij = Cli+ai(Xij - Xi.)

This is identical to the test of the hypothesis as:

Ho : al = a2 = ... = ar = a

Ha : Bi .:!:. aj for some i + j.

Under the Ho, all the samples have a common slope which is estimated by

~ ~ (Yij - Yi.) (xij - Xi.)
b
c

= _l_J__..,..- _

E E
ij

The ss about these parallel lines is

SSC = E E (y.. - y. )2 - b2 [ E E (x.. - x. )2]
i j 1J 1. c i j 1J 1.

The new analysis of covariance table for one common slope is as follows:

Source '., SS d. f. F~ -i

Excess explained SSC-SSE r-l (SSC-SSE)/r-l
by r lines SSE/N-2r

About r lines SSE N-2r

About single slope SSC N-r-l
r different intercepts

If Ho is accepted, the lines are parallel. If Ho is rejected, then we may

perform another test which is often referred to as the test of adjusted means.

The new Ho and Ha is the following: i.e.

Ho (x .. - ):Yij - Cl+a - x
1J

Ha : Yij =Cli+a (x .. - x· )1J 1.



This is i denti ca1 to the test of the hypothesis

Ho "1 = "2 = ... = a. = a.r
Ha ".+ "j fo r some i ~ j.1-

Under the Ho, we have a new table of analysis of covariance as:

Source SS d. f. F

Exp1ai ned by SST-SSC r-l (SST-SSC)/r-l
r intercepts . SSC/N-r-l

About single slope SSC n-r-l
r different intercept

About single line SST N-2

When covariance is used in testing adjusted treatment means, it is important

to know whether or not the independent variable is influenced by the treatments.

If the independent variable is so influenced, the fnterpretation of the data

is changed. This is because the adjusted treatment means estimate the values

expected when the treatment means for the independent variable are the same.

Adjustment removes part of the treatment effects when means of the independent

variable are affected by treatments. This does not mean that covariance should

not be used in such cases, but that care must be exercised in the interpretation

of the data.

The computations of analysis of covariance are obtained by BMD03V,

BMD04V. and BMD09V (Dixon, 1974). General reference books for the analysis of

covariance are Li (1964), Snedecor and Cochran (1967), and Steel and Torrie

(1960).

4.1.5 Goodness of Fit

The method of measuring the discrepancy between an observed and a

theoretical distribution and of deciding when the discrepancy is so large that

the theoretical distribution is not a good fit and does not adequately explain



with k-l-m degree of freedom.

the observed distribution is developed in a simple procedure where all

the parameters are known in advance. A not very obvious but perfectly valid

relative measure of the discrepancy between an observed (0) and expected

frequency (E) is expressed as (0-E)2/ E. The sum of these quantities for all

classifications (sample events or categories) is an index of discrepancy, which

is called the chi-square (x2) goodness of fit test. The degrees of freedom

are the number of categories (k) decreased by one and the number of parameters

(m) estimated, i.e.

k 2i = 1: (Oi - Ei )
i-l

Ei

This test statistic has approximately a x2 distribution provided expected

frequencies are large (five to ten as a minimum). I fthe expected frequencies

are too small in both end categories, they can be pooled into the adjacent

categories. However, since the tails of a distribution often offer the best

source of evidence for distinguishing among hypothesized distributions, the

x2 approximation is improved at the expense of the power of the test (Steel

and Torrie, 1960). Cochran (1942, 1952, and 1954) has shown that there is little

disturbance to the 5% x2 test when a single expected frequency is as low as 0.5.

However, in general, the accuracy of the x2 approximation improves as observed

frequencies (Oi) increase. The classification (category) should be chosen so

that each observed frequency is not small, that is, it suffices to insure that

each Oi ~ 5, but the approximation is reasonable even when a few 0i ~ 2 and the

remaining 0i ~ 5.



Suppose that we have a random sample of size n, and selected k class

intervals [xl, X2), [X2, X3), [x3' x4),···[xk' Xk+1), with say xl ,,-~

and xk+1 = +~. Let fi be the observed frequency in the interval [Xi, Xi+l).

To compare an observed distribution with a normal distribution with mean

~ and variance 2. i.e. N(~,o 2), then the expected frequencies are required.

To compute expected frequencies, the probabilities associated with each interval

are necessary. These probabilities are obtained by Zi = (xi -~)/o, i.e.

Pi = P (Xi'::' X<Xi+1) = P (Xi-~ .::. Z.::. xi+l -~).

o o

So we find the sample mean x and variance s2 and consider them ~and 02.

Then each probabil ity on a gi yen interva'] times the tota1 frequency n, 1. e.

Ei = nxpi, gives an expected frequency on that interval. We compute now the

value of the test statistics defined by the formula as the above
2 k 2

x = I: (0; - E;)
i=l Ei

with k-1-2 = k-3 degrees of freedom (d.f.), since we lost 2 d.f. for estimating

two parameters wand 02. We reject the null hypothesis Ho (E(x) = O(x)) if

i > la, k-3 where ia, k-3 is the critical val ue from chi-square table with

k-3 d.f. and a level of significance, and E(x) in a distribution of expected

frequencies (in the above example) (E(x) = N (~, 02), and O(x) is a distribution

of gi ven observed frequenci es. Thisis a so-called "test for normality".

In a similar way we could test whether a random sample has a Poisson

or negative binomial distribution by a goodness of fit test. These are a

so-called "test of randormess". Steel and Torrie's book (1960) is a good

. starting point for reference on this topic. Kendall and Stuart (1961) is

an excellent ref€rence for the theoretical structure of a goodness of fit test.



4.1.6 Biological Assay

4.1.6.1 Bioassay

Biological assays are methods for the estimation of natural constitution

or potency of a material by means of the reaction that follows its application

to living matter. The typical bioassay involves· a stimulus (heavy metal,

drug, vitamin,fungicide, etc.) applied to a subject (fish, animal, a piece

of fish tissue, plant, bacterial culture, etc.). Application of the stimulus

is followed by a change in some measurable characteristic of the subject, the

magnitude of change being dependent upon the dose. A measurement of this

characteristic is the response of the subject. The relationship between dose

and response will not be exact, but will be obscured by random variations

between replicate subjects.

Typically two preparations are involved, one designated as "standard"

and the other as "unknown". Any test preparation of the stimulus, having an

unknown potency, is assayed by finding the mean response to a selected dose,

and equating this does to that of a standard preparation shown by experiment

j produce the same mean response; experimentation with several different

doses of one or both preparations is almost always needed in order to accomplish

this satisfactorily. The ratio of the two equally effective doses is an estimate

of the potency of the test preparation relative to that of the standard.

Bliss (1954) describes three types of bioassay and their underlying

assumptions as follows:

1. Comparative assays occur most widely and are of special interest

in research. They estimate the relative potency under specified conditions,

of two preparations which give a similar response. To determine whether the

eStimated potency is independent of the level of response requires two or

more dosage levels of both the standard and the. unknown. To test the assumed



linearity of the dosage response curves requires three or more levels.

2. Analytical assays for biological standardization depend,

theoretically upon the following additional assumptions: 1) the standard

and the unknown differ only in the concentration of the same active agent,

2) the same relative potency would be obtained with all methods of assay or

test organisms, 3) if the stimulus contains two or more active proportions

in both the standard and the unknown.

3. Pass or fail assays test whether the unknown preparation meets

prescribed standards but do not determine its actual potency. Although

comparative or analytical assays are often used instead, they may be relatively

less efficient for inspection purposes.

When the response can be plotted linearly against the logarithm of the

dose, the relative amounts of the two preparations which produce any given

response is estimated by the horizontal distance between two parallel regression

lines. Suppose Xs is a dose of a standard stimulus, S, and Ys is the response

measured on a subject receiving this dose under the specified experimental

conditions. Let T be a stimulus of the unknown to be compared with assayed

against S. We have similarly XT and YT for a dose and response of the unknown

preparation. Then, we summarize as two equations:

Ys =as + b log Xs

YT =aT + b log xT

There are two parameters (as and aT) for each stimulus and b is identical

for Sand T. What we want to have is the estimate of potency (lnST) which

is the difference between equipotent values x, the horizontal distance between

the two 1i nes for Sand T;i. e.

ST =exp [(as - aT)/b]

lnST = (as - aT)/b .



The detailed treatment of estimation of potency, test hypothesis of potency,

test hypothesis on linearity, parallelism and analysis of variance,are

described well by Finney (1964).

As an example, there may be reason to believe that ST represents a

chemical property of T, the ratio of its content of the active constituent

to the corresponding content for S, independent of the particular conditions

of experimentation. Provided that measurements of Ys and YT for various doses

are made under the same experimental conditions, a requirement usually fulfilled

I by arranging for simultaneous experimentation with random allocation of subjects

to preparations and doses, and an estimate of Sr will then have general validity.

Statistical analysis cannot prove that ST exists and is independent of experimental

conditions. The purpose of validity tests, such as the test of parallelism

in a parallel line assay, is to examine whether a particular assay experiment
\

}'1 shows any indications of departure from the general pattern: Accidental

introduction of impurities or other disturbances may be detected by a typical

behavior of responses, so enabling a faulty experiment to be discarded and

replaced.

Cornfield (1964) has justifiably criticized that certain statistical

criteria of validity be met before any assay is regarded as of practical value

fur

the

relative potency, ST.

reality of many assay

Such an idealization may be scarcely relevant to

situations; if the preparations assayed are qualitatively

dissimilar, the strict dilution requirements can scarcely be satisfied. The

linear regression of response on logarithm dose may not be parallel, yet results

of such comparative assays may still seem useful in giving some indication of

relative potency. He comments that if the slopes in such as assay do differ



considerably, then there is no alternative other than to treat relative

potency as a function of response level. He develops a statistical technique

based on representation of relative potency as itself a linear function of

the expected response to preparation. Finney (1965) examines the general

situation in a broader framework, to see how far Cornfield's proposal conforms

to reasonable requirements on the properties of a measure of relative potency.

However, Finney stated that Cornfield's considerations deserve further theoretical

study as well as experimental approaches and his paper invites discussion rather

than acceptance.

The complicated bioassay designs, such as regression analysis with

factorial techniques and quanta1 responses, are referred to in Finney (1964),

Bliss (1952) and Bliss (1954).

4.1.6.2 Probit Analysis

In the biological assay data the percentage or proportions of the

subject reacting to the doses of stimulus can be converted into probit (probability

unit). Bliss (1934) defines the probit as the normal equivalent deviate increased

by 5 in order to make negative values very rare. Probit for specific percentage

values were tabulated by Bliss (1935), and were reproduced by Fisher and Yates

(1964, Table IX) and Finney (1971, Table I). A simplified table, sufficiently

detailed for many purposes, is given as Table 4 (Finney, 1971. Table 3.2).

The relation between the probit of the expected response proportion

response and the dose is y = 5 + 1 (x-~) where ~, a are mean and standard
a

deviation of the normal distribution estimated from data, and x is the logarithm

value of the stimulus (dose) level. Y probit from above tables. is related·

to p which is the probability derived from the normal distribution as follows:

y-5

- 00

1 ­
,1-- e

21)"

Then, least square procedures are used to estimate the best straight line



passing through the k points (xi' Yi), i.e. Yi = (5- ~) + ~ xi = ~+8 xi'

To test whether this probit regression line is well represented with the

results of the experiment, the utilization of a chi-square goodness test

is appropriate, i.e.

I
x2 = L

i =1
(ri - niPi)2
niPi(l-Pi)

with 1-2 degree of freedom

where ri is the observed response out of the ni samples of i th dose level

and Pi is the probability defined as above under the normal curve with Yi,

probit of i th dose level. If the test is not rejected, then the probit

regression line appears to be a satisfactory representation of the experimental

results. Otherwise, we need to find a suitable transformation to analysis

and meet the requirement of the experiment. Then (S-~)/8 is an estimate of

the logarithm value of the lethal dose of 50 percent responses (log LOSO).

The real LOSO value is obtained by taking the value of anti-log LOSO. The

standard error of log LOSO is approximated by s = 1/ I ~ nj wi where ni is,
the sample size of i th dose level and wi is the weight coefficient for i th dose

level (Table 5, Finney, 1971, Table 3.5), if the log LOSO is not very different

from the mean value of dosages (x) in the experiment. This expression makes

no allowance for sampling errors in the estimation of 8. If log LOSO is far

from the mean value of dosages, the standard error is grossly underestimated.

It requires adjustment with correction factors, i.e. the variance of log LOSO

is expressed as:

S2 = var (log LOSO) = 1)21 ["';-n-,.-w-,. + (log LOSO - x)2 ]
~ ~ niwi (x-x)2
i ,



Thus, the confidence limits for log LOSO at the S percent level of

significance is obtained by log LOSO ~ 1.96 s. If logarithm scale, to base

10 is used, we have confidence limits for LOSO expressed as, i.e.:

LOSO + 1.96 [ (lOLOSO) (loge 10) (s) ].

For further details, Finney (1971) is appropriate.

In practice, when experimental data on the relation between dose and

mortality have been obtained, either a graphical or an exact probit solution

(regression as above) can be used to estimate the parameters. The graphical

approach is rapid and sufficiently good for many purposes, but for some more

complex problems or when an accurate assessment of precision of estimates is

required, the exact probit solution is necessary. Both approaches are

described with detailed examples in Natrella (1973). The more advanced design

problems and foundations of probit analysis are presented by Finney (1971).

Computation of the exact probit solution is obtained by the BM003S (Dixon, 1974)

computer program.
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Table 4. Conversion table for probits (Y) from response percentage (i .e. r/n where
r is number of responses out of n sample size), e.g. Y = 5.39 if (r/n)
100 = 65.

0 1 2 3 4 5 6 7 8 9

0 2.67 2.95 3.12 3.25 3.36 3.45 3.52 3.59 3.66

10 3.72 3.77 3.82 3.87 3.92 3.96 4.01 4.05 4.08 4.12

20 4.16 4.19 4.23 4.26 4.29 4.33 4.36 4.39 4.42 4.45

30 4.48 . 4.50 4.53 4.56 4.59 4.61 4.64 4.67 4.69 4.72

40 4.75 4.77 4.80 4.82 4.85 4.87 4.90 4.92 4.95 4.97

50 5.00 5.03 5.05 5.08 5.10 5.13 5.15 5.18 5.20 5.23

60 5.25 5.28 5.31 5.33 5.36 5.39 5.41 5.44 5.47 5.50

70 5.52 5.55 5.58 5.61 5.64 5.67 5.71 5.74 5.77 5.81

80 5.84 5.88 5.92 5.95 5.99 6.04 6.08 6.13 6.18 6.23

90 6.28 6.34 6.41 6.48 6.55 6.64 6.75 6.88 7.05 7.33

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

99 7.33 7.37 7.41 7.46 7.51 7.58 7.65 7.75 7.88 8.09



·Table 5. The weighting coefficient (w) for the probits. e.g. w = 0.503 if y = 4.2.

'j 0.0 O. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.001 0.001 0.001 0.002 0.002 0.003 0.005 0.006 0.008 0.011

2 0.015 0.019 0.025 0.031 0.040 0.050 0.062 0.076 0.092 0.11 0

3 0.131 . 0.154 0.180 0.208 0.238 0.269 0.302 0.336 0.370 0.405
.'

4 0.439 0.471 0.503 0.532 0.558 0.581 0.601 0.616 0.627 0.634

5 0.637 0.634 0.627 0.616 0.601 0.581 0.558 0.532 0.503 0.471

6 0.439 0.405 0.370 0.336 0.302 0.269 0.238 0.208 0.180 0.154

7 0.131 0.110 0.092 0.076 0.062 0.050 0.040 0.031 0.025 0.019

8 0.015 0.011 0.008 0.006 0.005 0.003 0.002 0.002 0.001 0.001



seasonal effects, and

random, unsystematic or irregular components.

oscillations about the trend with a greater or l~ser regularity,
/

4.1.7 Time series analysis

Observations on a phenomenon which is moving through time generates

an ordered set known as a time series. The objective of time series analysis,

as~ statistical analysis as a whole, is to arrive at a deeper understanding

of the causal mechanisms which generated it, because we wish to extrapolate

into the future.

The typical time series may be composed of four parts:

1) Trend or long term movement,

2)

3)

4)

We can always represent a series as one of these constituents or sum of several

of them. A large part of the traditional theory of time series is devoted

to an analysts of the data into such components, so as to ,}~Olate them for

separate study. However, if we can represent a series as the sum of such

experiments. they correspond to independently operating causal systems. The

analysis of components of a series is often useful, but it may be misleading.

In any case it is not the ultimate object of statistical analysis. The

statistical analyses are not detailed here, however, Kendall and Stuart

(1966). Davis (1941) and Croxton ~nd Cowden (1947) cover the subject. Croxton

and Cowden is the best choice for a starting point to understand and comprehend

time series analysis. Kendall and Stuart are theoretical, but cover the

subject thoroughly. Davis' book is oriented toward economic time series, not

the environmental monitoring aspect, but is still worthwhile. BMD computer

programs are available, but these require considerable knowledge for inter­

pretating output.



4. 1.7. 1 Trend
The concept of trend is difficult to define succinctly,. The

statistical problem is to decide what type of trend fits the data closely.

It must describe data logically. Such a trend is not only an expression of

tendencies; but also provides a base from which to measure deviations. Thus,

there are two reasons for attempting to describe the trend of a series by

some kind of curve fitting. First, it may be desirable to measure the deviations

from trend. These deviations consist of cyclical, seasonal and random movements.

Second, it may be useful to study the trend itself, in order to note the effect

of factors bearing on the trend, to compare one trend with another, to discover

what effect trend movements have on cyclical fluctuations or to forecast

future trend movements.

The simplest method of describing a trend is a graphical present­

ation, drawing it free hand or. by use of curve-fitting rules. Plots of the

data on semi-logarithmic paper tend to straighten out some rate trends. The

trend will be a straight nne on this type of scale if the series is increasing

or decreasing at a constant rate.

If the polynomial is fitted to the whole series by the least

squares method, it may produce a linear or curvilinear regression line of

Yt on the time variable t, i.el;:

Yt = a+b1t + b2t 2 + .• ,,+ bptP

It is clear, however, that to obtain a satisfactory trend curve for marine

environmental data; we should have to take a polynomial of rather high order

or a somewhat complex general function. This may be not too easy to handle and

in any case the coefficients of such a polynomial, being based on higher order

term, would tend to be unstable from the sampling viewpoint. A more practical



point is if we add another tenn to the series, for example if we are keeping

an annual series current from year to year, the curve fitting has ,to be

redone each time. Moreover, the trend line may be affected throughout its

length. When, therefore, the series has no obvious trend to utilize the

polynomial, it is more -convenient to use the moving average method.

The moving average method is a simple and flexible mathematical

technique of trend fitting. The moving average is to take the first n terms

(n being chosen at will), fit a polynomial of degree p, not greater than n-1,

to them, and use that polynomial to determine the value in the middle of its

range; then to repeat the procedure with next n tenns from the second to the

(n+1)th, from third to (n+2)th, and so on, moving on one term at each stage.

Unless other considerations require it, we take n to be an odd number, so that

the middle point of the range corresponds in time to a value which is actually

observed. Otherwise, if we take n to be an even number, the middle point falls

halfway between two observed values, or we have to use some value of fitted

polynomial other than the middle point which results in a loss of useful

symmetry. A simple example of a moving average is illustrated below:

the corresponding graph, which represents the general trend because the minor

deviations of the series are averaged out in the process of its construction.



4.1.7.2 Seasonality

Perhaps the easiest component to understand and to remove from

the time series is the seasonal effect. This is a fluctuation imposed on the

series by a cyclic phenomenon external to the main body of causal influences

at work upon it. The seasonality, refers to the effects which are annual in

period, or applies to any phenomenon generated by strictly periodic natural

processes, such as spring and neap variation in tides or daily variation in

temperature. We must, however, be careful about extending the notion of season-

a1ity to phenomena which are not demonstrated beyond reasonable doubt to depend

on strictly periodic stimuli. For instance, to speak of sunspot variation as a

seasonal effect, it may be too extreme to infer seasonality in the climatic

and oceanic environment as a function of sunspots, even if the relation between
~

the two were established.

Kendall and Stuart (1966) stated a few approaches to deal with the

seasonality factor. A possibility is to use a moving average to eliminate

trend before examining the residual values for seasonality. We then, of course,

run into the danger of distorting the residuals. However, if we choose the

moving average with care, we can minimize this effect so far as seasonal effects

are concerned. In fact, if the simple moving average (with equal weights) is

equal in extent to the period of a cyclical component, the trend value of the

components is zero, so that residual is unimpaired. The effect of trend

elimination both on seasonal components and random residuals are treated with

spectrum analysis. Readers who are interested in pursuing spectrum analysis

should consult the book by Kendall and Stuart (1966).

To treat seasonal effects, we rank the quarters within anyone

year from 1 to 4 and consider how the ranks vary from year to year. To test



these seasonal indices, we use the model equation ~t

t = 1, 2... , n, q = 1, 2, 3, 4. The procedure is to

= y s +~ for+ q

assume that each

=Yt + Sq + ~, which is an ordinary analysis of variance

not slow, we have to transform the equation as log ut =

Then, the analysis of variance model is also utilized.

If the trend is

+ log s +)log.
q /

4.1.7.3 Oscillation

log Yt

observation is the sum of three effects: a yearly value, y, a seasonal value,

s (constant from year to year in proportional effect), and an error term ~,

which is random. If the trend is slow, so that the seasonal effect may be

regarded as constant from year to year in absolute (not proportional) magnitude,

we have approximately u

model.

If we remove the attributable elements to seasonal variation and.

trend, we shall be left with a series oscillating about some constant value.

This movement may b~ so small as to be virtually negligible. The series, then,

consists entirely 0) beasonality and trend. The seasonality and trend may

themselves be non-existent, in which case the series is· entirely oscillatory.

An oscillation in a time series (or more generally, in a series ordered in time

and space) is a more or less regular fluctuation about the mean value of the

series. In this sense it can be sharply distinguished from a cycle, which is

strictly periodic; thus a cyclical series is oscillatory, but an oscillating

series is not necessarily cyclical. To fit an oscillatory curve, we can

utilize a sine-cosine function curve to adjust the cyclical pattern of observed

values, y. A typical curve is expressed as:

Yc =y + A sin (3~O X)O + B cos (3~O X)O

where y = mean of y

T = the periodicity in time (say month, season, etc.)

A = 2 ~[Y sin (~X)O]
f

B = 2 ~[Y cos (360 X)O]
f T

Y =.observed time series variable

x = time period



However, it is found that most environmental data series in practice are not

exactly periodic or oscillatory, and that it is difficult to describe them

adequately by mathematical curves.

4.1.7.4 Randomness

We have discussed long term trends, seasonal effect and systematic

oscillatory behavior. However, some of the time series which we are concerned

with in environmental phenomena are clearly expressed by none of the above

characteristics. An ordered series of observations could have risen by pure

chance. There are many tests for randomness. Kendall and Stuart (1966)

suggest a few such as the rank correlation test, difference-sign test, series

correlation test and others.



4.2 Non-Parametric Statistics

Non-parametric statistics require no particular assumptions about the

form of population distribution. Thereby, a non-parametric statistical test

is one whose model does not specify conditions about the parameters of the

population from which the sample was drawn. Certain assumptions, however,

are associated with most non-parametric statistical tests; i.e. that the

observations are independent and that the variable under study has an underlying

continuity. These assumptions are much weaker than those associated with

parametric statistical tests. Moveover, non-parametric tests do not require

the forms of real value that are required for the parametric tests; most

non-parametric tests ~pp1y to data in an ordinal scale, and some apply also

to data in nominal scale.

Non-parametric statistics have a number of advantages: 1) Probability

statements obtained from most non-parametric statistical tests are exact

probabilities (except in the case of large samples where approximations are

available), regardless of the shape of the population distribution from which

the random sample was drawn; 2) there are suitable non-parametric statistical

tests for treating samples made up of observations from several different

populations; 3) since they may use ranks or signs of difference, they are often,

though not always, quick and easy to apply and to learn; 4) for the same reasons,

they may reduce the work of data collecting.

The non-parametric statistical tests discussed in this manuscript represent

only a few of many non-parametric statistical inference methods available.

A much larger collection of non-parametric test procedures, along with worked

examples, are given in Siegel (1956) and Conover (1971). The popular general

statistic books, such as Snedecor and Cochran (1967), Steel and Torrie (1960)

and Mendenhall (1975) are good starting points for a better understanding of

the topics. Several popular non-parametric statistical tests are computed by

DMDP)3S computer program (Dixon 1977).



4.2.1 Wilcoxon Twa Sample Rank Sum Test (Mann-Whitney U-Test)

When at least ordinal measurement has been achieved, the Mann-Whitney

U-test may be used to test whether two independent groups have been drawn from

the same population. This test is one of the most powerful of the non-parametric

statistical tests, and it is a most useful alternative to the parametric t-test

when the experimenter wishes to avoid the assumptions of the t-test.

Suppose we have samples from two populations, population A and B. The

null hypothesis, Ho, is that A and B have the same distribution. The alternative

hypothesis, HA, against which we test Ho, is that A is stochastically larger

than B. Let n1 be the number of cases in the smaller of two independent groups,

and n2 be the number of cases in the larger. Then, the test statistic is

computed as follows:

1. Rank all observations in the whole experiment disregarding that the

samples are drawn from A and B.

2. Compute the sum of the ranks for each group (Tl and T2)'

3. Average the ties for rank computation. Each score is given the

mean of the ranks for which it is tied.

4. Look at the rank sum from a group which has the smaller sample size.

Call this rank sum T.

5. Compute T' = n1(n1+n2+1) - T

6. Compute the smaller rank sum with tabulated critical values (Snedecor

and Cochran, 1967, and Steel and Torrie, 1960).

7. Reject Ho if the smaller rank sum is less than the critical table

value at a given significance level a.

8. If the critical table value is inadequate, we can use the mean and

standard deviation of T as



a :
T I nln2(nl+n2+1)

12

With these and T, we may compute quantity Z : -(T - ~t)/aT' which is approximately

normally distributed with mean 0 and variance 1 as nl and n2 become large.

Use the critical values of normal distribution as in the usual (parametric)

testing hypothesis procedure.

To use Mann-Whitney U-test procedures, we follow ~he steps as above then,

U = nl n2 + nl(nl+l) - Tl
2

or U= nln2 + n2(n2+1) - T2
2

5* Compare the smaller U with tabulated critical values (Siegel, 1956).

6* Reject Ho if smaller U is less than the critical table values at given

significance level.

7* Similar way as Wilcoxon's test, a simplified larger sample test can be

obtained using the familiarZ statistics. When the population distributions

are identical, it can be shown that the Mann-Whitney U-test statistics has

the mean and standard deviation of U as

Then Z = (U-~s)/as tends to distribute normally with mean zero variance 1 as

nl and "2 become large. This approximation will be adequate when nl and n2

are both greater than or equal to 10.

The computations are obtained by BMD_)3S (Doxon, 1977) computer program.



4.2.2 Kruskal-Wallis Test

The Kruskal-Wallis one-way analysis of variance by ranks is aJuseful

test for deciding whether k independent samples are from different populations.

Sample values almost invariably differ somewhat. and the question is whether

the differences among the samples signify genuine population differences or

whether they represent merely chance variations such as are to be expected

among several random samples from the same population. The null hypothesis

for the Kruska1-Wallis test is that the k samples come from the same population

or from identical ·popu1ations with respect to average. The test assumes that

the variable under the study has an underlying continuous distribution. It

requires at least ordinal measurement of that variable.

The procedures for utilizing the Kruskal-Wallis test are the following:

1. Rank all the k sample combined observations in a single series

disregarding the samples that are drawn from k samples.

2. Compute the sum of the ranks in each k groups. Ri for i - 1.2, ...• k

3. Average the ties which occur between two or more scores. each score

is given the mean of the ranks for which it is tied.

4. Compute the test
. 12 k

k-w = N(N+1) ~
1=1

statistics
2Ei -3 [N+l]

ni

k
where N= t ni' the number of all observations in k samples combined. nl = number

i=l
of observations in i th sample. and Ri = sum of ranks in i th sample. This test

statistic is distributed approximately as chi-square with degrees of freedom

of k-1. for sample size (ni's) sufficiently large.

5. Reject null· analysis Ho if K-W x2 a. (k-1) where x2• (k-1) is the

critical value found in the chi-square table with degree of freedom

k-l and ~ level of significance.



We may recall the concept of multiple comparison technique in the

parametric statistical procedures. If the K-W statistic is not signiflcant,

the k samples come from the sample population. However, if K-W is significant

(Ho is rejected), this suggests that at least two samples are drawn from

different populations.

Hence, we want to explore which samples do not satisfy the hypothesis.

Where the difference of any two mean rank exceeds the critical value, they

are drawn from significantly different populations, i.e.

I N(N+l)
12

where Ri = average rank of i th sample

= 1 n·r' R
n1' mn=l

We can perform all possible pair-wise testing procedures for better

interpretation. Unfortunately, even if we reject the null hypothesis of the

Kruskal-Wallis procedure, we cannot detect any difference between i th and jth

mean rank difference i.e., we cannot find any lRi-Rjl is greater than a given

critical value as above. The reader should consult more details of the multiple

comparison test and approximation procedure for the Kruskal-Wallis tests in

the books by Miller (1966) and Hollander and Wolfe (1973).

The computations are obtained by BMDP)3S computer program (Dixon, 1977).

4.2.3 Kolmogorov~SmirnovTest

The Kolmogorov-Smirnov one sample test, is a test of goodness of fit.

It is concerned with the degree of agreement between the distribution of a set

of sample values (observed scores) and some specified theoretical distribution.

fJ
/



It determines whether the scores in the sample can reasonably be thought

to have come from a population having the theoretical distribution, The test

involves specifying the cumulative frequency distribution· which would occur

under the theoretical distribution and comparing that with the observed

cumulative frequency distribution.

Let Fo(x) be a completely spec{fied comulative frequency distribution

under the null hypothesis Ho. That is, for any values of x, the value of F(x)

is the proportion of the case expected to have scores equal to or less than

x. S(x) is the observed cumulative frequency distribution (step function) of

a random sample of N observations. Where x is any possible score, Sex) =

kiN where k is the number of observations equal to or less than x. So under

the Ho, it is expected that for every value of x, S(x) should be close to F(x).

The Kolmogorov-Smirnov one sample test focuses on the largest of the deviations,

i.e.:

D = maximum 1 F(x) - Sex) 1

The sampling distribution of D under the Ho is known. We can compare the

value of D and critical table value (Siegel, 1956). If D > a given critical

value, we reject the Ho.

The Ko1mogorov-Smirnov two sample test is a test of whether two independent

samples have been drawn from the same population or frd~ populations with

the same distribution. The two-tailed test is sensitive to any kind of differences

in location (central tendency) and dispersion. The one tailed test is used

to decide whether the population values from which one of the samples was

drawn are stochastically larger than the values from other populations.



Let Sl(X) and S2(x) be the observed cumulative frequency distribution

(step function) of the first and second sample, i.e Sl(X) = klnl and

S2(x) = l/n2' The Kolmogorov-Smirnov two samples test focuses on

D = maximum 1 Sl(X) - S2(x) 1

The principle of hypothesis testing is the same as the one sample test

with different critical table values for the two .sample test (Siegel, 1956 and

Hollander and Wolfe, 1973). In the case of large sample approximation

procedures see Hollander and Wolfe (1973).

4.2.4 Correlation

If, with a given set of experimental data, the requirement is not met or

the normality assumption is unrealistic, then use one of the non-parametric

correlation coefficients, Spearman rank correlation, Kendall rank correlation,

Kendall partial rank correlation and Kendall coefficient of concordance. Non­

parametric measures of correlation are available for both nominal and ordinal

data. The tests make no assumption about the shape of the population from

which the scores were drawn. Some assume that the variables have underlying

continuity, while others do not even make this assumption. Moreover, we find

that, especially with small samples, the computation of a non-parametric

measure of correlation and test of significance is much easier than the

computation of the Pearson correlation described earlier.

The detailed procedures of computation and applications are found in

Siegel (1956), and the computation for Spearman rank correlation is obtained

by BMDP)3S (Dixon, 1977) computer program.



4.3 Measures of Association

Originally we were to attempt summarizing a few indices of measurements

useful for marine ecological investigations, i.e. methods to determine measures

of similarity, diversity, and clustering. Since there are excellent references

for the topics, all well detailed, we did not attempt summarization. Refer

to the following:

Similarity - Boesch (1977) and Clifford and Stephenson (1975

Diversity - Clifford and Stephenson (1975), Pielou (1974) and Pielow (1975)

Clustering - Boesch (1977) and Everitt (1974).



5. Applications

None of the quantities involved in Ocean Pulse research can be observed

or measured throughout the whole population. ·Conclusions will be based on the

attributes of samples considered representative. If the sampling and analysis

are good the interpretation derived may differ little from reality. In order

to achieve this the objective will require a thorough grasp of individual

subjects and indices developed in allied fields. Some recognition of limitations

(probabilities) is necessary for deriving projections of events. The correlations

of time series will likely be employed and the topic will be an important part

in the synthesis of research findings. At the present time the array of intended

test species and enlisted disciplines is noted in Table 4. Each of the activities

is considered a promising arbiter of environmental quality. However, the

efficiency, reproducibility and other attributes of the studies still remain

to be evaluated in many cases. The selection of test species has been derived

from the availability of species encountered in sampling gear during early

cruises. Nevertheless, these key species must be linked as a part of the

tangible ecosystem model which we develop and characterize in our synthesis.

The subjects range from phytoplankton, constituent chemicals and chlorophyll

through particulate, filter feeding invertebrates and commercially harvestable

fish species. The suitability of various statistical tests is discussed below

for each of the study disciplines (Table 5). However it must be remembered

that after the basic survey series of results there will be material to begin

determining time series trends. Only from the integration of individual study

results, will there follow an evaluation of ecosystem impacts.



5.1 Community Studies

Descriptions of population makeup by location will require anqlyses

to determine similarities of composition, by species and biomass. These

referred to here are of general assemblages in the water column or 1iving

on and in the sediments.! Special topics treated below are basically of special

indicator groups. Succession studies simply measure population changes over

time. Correlations and diversity indices are appropriate as are equitability

indices. A clustering analysis is available in a computer package which

classifies the similarity and dissimilarity hierarchy of organisms; Multiple

regression and all multivariate analyses are most appropriate in relating

change or differences to background variables.

5.2 Seasonal Abundance of Organisms (Host and Parasitic)

Contaminants, such as heavy metals can be correlated to such variables

as substrate, water mass characteristics and climatological phenomena. This

presentation is a natural outgrowth of a time series analysis. Regression,

correlation, multivariate analysis and analysis of variance are all appropriate.

Some non-parametric tests.

5.3 Succession Studies

To measure the natural and unnatural progress of dominant organisms, both

water column, substrate biota and fish are considered. This can include an

analysis of species interactions (i.e. replacement). Multivariate tests and

variance analysis are all appropriate, obviously in a time-series mode.

5.4 Anaerobic Analysis

A special form of population analysis to express the dynamics of the

bacterial population. Interest in the enumeration of anaerobic bacteria in

sediment, water and animal tissue and the presence or absence of disease producing



organisms. Inshore-offshore interactions will be studied as well as

comparative ana~J5es of impacted and control sites. Multiple corre~ation,

analysis of variance, bioassay and clustering techniques are all feasible

tests. Changes will be observed seasonally and some non-parametric tests may

be found appropriate.

5.5 Calorimetry

Technique is to measure bound carbon in the biota. This may provide an

index of condition to measure differences or relate with impacts upon species.

This is related to the study for trophic interactions and energy budgets.

Regression and correlation techniques, analysis of variance and covariance are

principal tests. Some non-parametric tests are appropriate. Correlations will

be made to physiological and pathological survey data.

5.6 Physiological Activities

The objective of physiological and biochemical activities is the detection

of abnormal variations from baseline norms in a variety of marine animals,

including finfish, molluscs and crustaceans. The plan is to sample key species

to compare between impacted areas and control stations. Field detected

abnormalities will be compared with those noted in laboratory studies. As

levels of enzymes and blood are established and compared, many tests are

appropriate. These include regression, correlation, multivariate analyses,

analysis of variance, bioassay techniques, and profit analysis. Some non­

parametric tests will be pertinent. These will be related to temporal and

spatial differences. Studies will be coordinated with pollutant uptake studies

and pathological findings. There will be an intimate association with the

chemistry staff. Tissues used by physiology and biochemistry will be analyzed.



5.7 Parasite Analysis

This is a special form of population study consisting of path6biological

survey and the effects of transmitted parasites and pathogens and their

routing levels of selected planktonic and benthic crustaceans. Parasites,

gross and histological abnormalities of selected species taken from pristine

and contaminated stations will be evaluated.

Blood parasites will be investigated in five finfish species - cod,

haddock, yellowtail, herring and silver hake. The object will be to determine

the distribution and preval~nce. Molluscan pathology will include the target
I

species of sea scallop and tellinoid clams. Pathological observations will

include gross and histological examination for abnormalities. Parasite

burdens, regression, correlation, multivariate techniques and analysis of

variance, are likely techniquEls. A time series analysis is possible as are
't 1also community analyses, such,~s clustering.

5.8 Vi rology

Delineation of blood virus characteristics of marine organisms.

Five commercially important species have been selected including cod, haddock,

yellowtail, herring, and silver hake. Clinical techniques are available for

assaying variations from normal. In these species as well as many others,

-norms- have yet to be established on types and incidence. Multivariate,

correlation analyses, and analysis of variance are possible choices for

-analyses, also bioassay and non-parametric techniques. Population measures

(diversity, etc.) may also be adaptable as data accure.

5.9 Anorna lies

Measures of gross and histopathological effects include type, frequency

and distribution. Correlations and both parametric and non-parametric analyses

of variance are likely. One target species is Ammodytes. The egg is demersal;



adults spawn along the inside edge of the shelf and are also demersal,

spending considerable time burrowed in the sediments associated with

degr.aded habitats.

5.10 Nutrient Bioassay

Initial study is planned as a growth assay employing two phytoplankton

species, seasonally dominant in Bight waters. Test data will consist of species

growth rates under experimental conditions. Test variables will include

nitrogen, phosphorus, metal, vitamins, and chelators. The objective is to

assess the influence of key substances known to limit phytoplankton growth.

Here all correlation and multivariate analysis techniques are useful. Non­

parametric tests are effective tools along with the obvious bioassay and

probit analysis applications.

5.11 Pollution Uptake Studies

Levels of metals in sediments and tissue collected from impacted and

normal environments will be determined. Subsequent tests can make use of

multivariate and correlation analyses, possibly a utilization of bioassay and

probit analysis. One aspect will be to compare field data with laboratory

exposure. A time series analysis to determine seasonal changes should be

considered as well as non-parametric tests.

51.:12 Geneti c Studi es

Studies of miotic figures and embryonic anomalies can utilize both

regression and correlation analyses. Correlations will be made with water

chemistry. Multivariate analysis should prove particularly useful. A larval

development series under laboratory exposures can be analyzed using bioassay

and probit techniques. Non-parametric tests are feasible as is the use of

a clustering for interpreting field data.



5.13 Petroleum Bioassay

A specific variation of pollution uptake studies and the same'

statistical techniques pertain.

5.14 Limiting Factors

This study relates to a determination of the sources of mortality of

surf clams and an estimate of relative impact. Analyses will include correlation

analyses, possibly bioassays if lab exposures are conducted. Probit and non­

parametric techniques are appropriate. Clustering could provide a useful

analyses of similarities.

5.15 Hydrocarbon Exposure Studies

These will make use of all the correlation analyses. This may be a

special variant of the pollution uptake studies. Multivariate analyses and'

analysis of variance will test effects of various petrochemicals on growth

and survival of biota. Non-parametric tests will be useful. Both bioassay

and probit analyses are likely choices for obtaining and analyzing data.

5.16 Benthic Respiration

Benthic respiration (seabed oxygen consumption) rates are an indicator

of organic loading and other impacts to the bentRos. The objective is to

detect abnormal variations in organic loading. This requires the establishment

of both temporal and spatial baselines of the natural system in both and

uncontaminated areas as well as laboratory tests to illustrate the nature of

the loading or stress versus the response of the system. Multiple regression,

analysis of variance, multivariate analysis, time series analysis and non­

parametric methods are most appropriate for achieving the objectives.



5.17 Total Plankton Respiration

Total plankton respiration rates are an index of the rates of ,decompositi on

of organic matter (utilization of oxygen) and the concurrent regeneration of

nutrients required for phytoplankton growth. The objective is to detect major

shifts in the temporal, spatial or size component distribution of plankton

respiration. This requires the establishment of temporal, spatial and size

component baselines of the natural system in both contaminated and uncontaminated

areas as well as laboratory and/or shipboard experiments to i11ucidate the

response of the system to contaminants and/or other stresses. Multiple

regression, analysis of variance, multivariate analysis, time series analysis

and non-parametric methods are most appropriate for achieving the objectives.

5.18 Phytoplankton Biomass and Primary Productivity

Chlorophyll a pigments are used as an index of phytoplankton biomass.

We are particularly concerned with the relationship between eutrophication

and shifts in abundance as well as shifts in size classes of phytoplankton

(chlorophyll) which may alter marine food chains. Correlation and multivariate

analyses will be applied to ascertain relationships between inorganic and

organic nutrients, heavy metals, and phytoplankton chlorophyll. Measurements

of primary productivity (via 14C methods) will be correlated with phytoplankton

biomass measurements, as well as measurements of nutrients, metals, light

and other oceanographic data to determine principle forces affecting organic

production.

5.19 Nutrient Studies

Inorganic nutrients (nitrates, phosphates, silicates, etc.) and organic

nutrients will be related to spatial and temporal distributions of pollutants

(metals, hydrocarbons, etc.). Nutrients will also be correlated with physiological

assays as well as with primary productivity measurements to determine which

nutrients are driving forces behind production. Multivariate analyses and multiple

regression tests will be employed.



6. Synthesis

Synthesis of the Ocean Pulse analysis encompasses the effects. of natural

and man-induced stresses on marine ecosystems and living resources. The program

should emphasize not only an integrated trend index analysis for marine

pollution problems. but also develop an understanding of an environmental system

and living resources as a whole.

The integrated trend analysis is mainly rated on baseline data of the

occurrence of marine pollutants. physical and chemical factors and their effects

on many species from lower trophic levels to higher levels. The synthesizing

trend interpretation also requires basic criteria for monitoring parameters

as standard measurements from effects observed under laboratory conditions. These

can be extended or extrapolated to the natural marine environment and living

resources. The integrated environmental systems-oriented analysis deals with

a total environmental system. The natural and man-induced stresses are effects

on the food chain dynamics and energy flow system. species composition and

community structure. biomass changes and the relationship between living

resources and their supporting environment.

6.1 Trend Index Interpretation

6.1.1 Determination of indicator parameters for monitoring

The right selection of ocean monitoring parameters is essential for

project success. The parameters are the biological. chemical. and physical

factors necessary for a synchronized trend analysis and systems interpretation.

They are a crucial linkage of species. nutrients. heavy metals, pollutants,

parasites. pathogens and other selected foci. These measured and/or estimated

parameters in the water column. sediment and/or organisms determine the trend

indices -- their interpretation will provide appropriate monitoring schemes.



6.1.2 Establishing criteria of the key parameters for monitoring under
laboratory conditions.

,
First, pertinent parameters are recognized and determined by their roles

within natural and man-induced stress environmental and ecological systems.

Then, following the establishment of criteria for describing tolerance limits

on biological responses. Directly or indirectly, growth, survival, health,

and other attributes of marine organisms influenced by varying environmental

quality must be examined. In other words, we have to establish the range of

threshold values of parameters which affect survival and influence the process

in which key species cope with man-induced stresses (e.g. heavy metal influx)

and natural mortality factors (parasites and pathogens). Without these criteria,

any monitoring activities are purely exercises of data collection documentation.

An important aspect of establishing criteria is how to consider the

problems of multiple exposure of pollutants, heavy metals, or other contaminated

matter. Synergistic effects behave in a compounded fashion. The~e may not

be easily interpretable as a single exposure case, or may not be even detectable

as the compounded responses. If the measurements of multiple exposure of

stimulants are available, the criteria may be obtained by the method of

bioassay with factorial designs and may be interpreted by utilization of

canonical correlation techniques.

6.1.3 Determining correlations of the criteria to survey field data

The applications of established criteria of the key parameters for marine

environmental conditions on various man-induced stresses should be directly

utilized from the survey field data. Ideally, onboard inspection and analysis

of the samples is desirable to detect abnormalities and for monitoring and

diagnosis of marine organism health on a real-time basis.



6.1.4 Interpretation of natural fluctuations and man-induced stress
processes, i.e. contrasts of contaminated against pristine areas

. )

This is a logical proposition for monitoring marine environment. However,

the interpretation of the results require extreme caution for practical app1ication~

in monitoring the marine environment. The spatial and temporal marine. environ-

mental conditions from which the samples are obtained are influenced by so

many external variables and constraints. These natural variables and constraints

make identification of aberrant levels or oscillations extremely difficult and

interpretation tenuous.

6.1.5 Time series interpretation

Once a series of observations for many desirable variables is compiled

from the field, the examination and interpretation of time series analysis

provides the means of monitoring schemes for the environmental fluctuation

and changes which are closely related to the abundance of marine organisms and

their community structures. As we have described in an earlier section, the

analyses of trend, seasonal variation, oscillatory phenomena and random

fluctuation processes are required the meaningful interpretation of significant

changes in the measured or estimated environmental parameters. Utilizing this

basic information will provide timely advice and warning to management so

appropriate actions may be taken.

Preferably, the interpretation of marine population cycles or successions

and environmental parameters should require extreme caution in environmental

assessment. This is simply because many cases of marine population successions

and environmental parameters may be essentially natural random fluctuations with

serial correlation between the populations and their environment in successive

years. We should focus attention upon the processes of marine population

dynamics as a whole; upon growth and decline processes, health problems with

various environmental limiting factors and carrying capacity of given environments

as well as unexplainable environmental changes and their parameters. These lead



to a broadly scoped monitoring scheme for a total ecosystem evaluation for

any environmental management.

6.2 Systems Oriented Interpretation

6.2.1 Ecosystem change monitoring

6.2.1.1 Food chain and energy flow dynamics

The study of food chain and energy budget flow dynamics in the

marine environment describes the dietary components and interrelation between

trophic energy transport. The study also identifies not only the process of

competition, predation, interactions and energy flow among organisms, but also

estimates the effects of transmitted parasites, pathogens, heavy metals, etc. and

their routing from lower to higher trophic levels within the marine environment.

Such a continuing monitoring effort will achieve the objectives of the Ocean

Pulse.

6.2.1.2 Species composition and community structure

Similarly, analysis of food chain and energy flow dynamics, species

composition and community structure changes within a given marine environment

will provide a monitoring technique for natural and man-induced stress effects.

It requires a standard mechanism or criteria for detecting and distinguishing

differences of normal or abnormal conditions. ';pecies composition and community

structure changes in a given marine environment, i.e. spatial and temporal

variations will be the input for interpretation of marine env;'ronmental assess­

ment. The main problem in attaining the stated objectives will be that of

establishing an acceptable healthy marine environmental model. Achievement

of this model will result from synthesizing the various inputs of individual

disciplines. The criteria for defining aberrancy and delineation of causal

effects will depend on a long series of insightful analysis.



6.2.2 Biomass change monitoring'

The measurement of biomass changes over time is another way to attempt

a meaningful monitoring in population changes of marine environment. The

measurement of absolute values of total biomass in the marine environment

is an ideal, but the actual figure is impossible to obtain. The relative

biomass indices are computed on the basis of quantified relative contribution

of time periods expressed in terms of an arbitrary standard time period base.

The index of the overall species relative biomass throughout the time periods

relates to spawning success, survival and growth within a given marine community.

However, as an alternative, we can select a few indicator species for monitoring

relative biomass changes over time. The choice should be based upon forms in

a well delineated and know~ fOod web and community structure organization.

Both major and minor elements should be included from each trophic level in

the subset. It will then be easier to monitor any changes in biomass of the

sUbset. Again, we should emphasize detecting and distinguishing natural

fluctuations from those caused by man-induced stresses.



,I

7. FEEDBACK
J

For our project or analysis to succeed and to minimize the errors between

what it is doing and what it intended to do to meet its objective, it must

somehow monitor its own activities. It must feed back a portion of its output

results for comparison with its input. Finding the cause of defectiveness

and the optimum solution for a given problem is usually difficult and requires

honest introspection. Thus, trial comparison of several alternatives can

determine the best resolution for a given problem. The continuing verification

of experimental alternates with realignment of the objectives under given

constraints is the feedback process.

The selection of alternatives for the optimum solution should be associated

with the prechosen criteria. A criterion is a rule or standard for ranking

the alternatives in their order of desirability and indicating the most promising

within fixed contingences, i.e. it usually provides a means for weighing cost

against performance within fixed contingencies, we must compute for each solution

the expected value of effectiveness measured and choose the solution that has

the highest expected effectiveness, assuming equal cost. We may also employ

the maximum procedure for measure of effectiveness.

For some of these contingencies, there may be available either sufficient

data (the constraints imposed on Ocean Pulse are the contents of the data

themselves) or sufficient theory so that we know the probability of occurrence

of each contingency. At the present time, we do not know how to determine the

probability distribution for the system which will deliver the expected measure

of effectiveness. Furthermore, if we construct some kind of robustness test

for the alternatives and the best solution, then such tests may be used as the



main body of criteria. These robustness tests and expected value criteria

should be based upon either some known probability distribution (p~rametric)

or completely distribution-free (non-parametric) method, so that they are

mainly dependent on the structure of the system or model, set of alternatives

and data themselves.



8. DATA MANAGEMENT*

Ocean Pulse is not a limited study involving but a single qiscipline.

If it were, data management would not need to be formally structured. The·

testing of the Ocean Pulse project hypotheses will be attainable only through

multidisciplinary studies. The goals and objectives are derived from all the

disciplines and investigators in anyone discipline do not necessarily provide

the total input in the resolution of questions. Project activities are

interdependent.

The experimental design of each project is essentially determined within

the project in consultation with biostatisticians. The project data bank

will lie in the NE Regional ADP System at the Sandy Hook Laboratory and its

data processing will function in archiving and updating files. Formats used

will be amendable to conversion to NODe files. To attain these objectives

the following description defines terms and a system to be used in data operations.

It is intended to provide a backdrop to researchers in planning their activities.

8.1 Introduction

The goa 1s of -Ocean Pul se inc1ude:

a. The collection and integration of data sets which assist in understanding

the nature and driving forces of complex marine ecosystems.

b. The creation of a data bank for use by a variety of users including

the public, scientists, and administrators.

The realization of these goals requires a systematic approach in the

organization and storage of data for maximum benefit to users in access and

retrieval; we call this approach data administration. The development of this

foundation for organizing information is intended to avoid costly duplication

of effort wherever possible .

.
* This material adapted from "Data Administration for Marine Ecosystems

Analysis", NOAA Tech. Memo. ERL &MESA-36 by P. A. Eisen, A. Sadler, Jr.,
and M. E. Sheffler.



Information is a decision-making and research tool. Efficientdata

systems can make a large amount of relevant information readily ac~essible.

The data administrator holds responsibility for convincing scientists that

the services provided by data systems can be used in the solution of complex

problems. Assuming you have a rudimentary knowledge of computers, we will

illustrate some ways to effectively use data administration in marine environ­

mental research.

This report presents a methodology of data administration. This methodology

has been adopted in some degree by the other NOAA Programs. We hope its

presentation here will encourage a dialogue for scientists and decision makers

to the data services they require.

The central aim of our data administration is to make data obtained

from research accessible to users. To accomplish this, the responsibility for

data archival and retrieval has been transferred from scientists to data centers

via the ADP staff. The reason behind this transfer of responsibility is that it

both frees investigators from time-consuming tasks and offers several advantages

to data users. Direct informal exchanges of data among scientists and others

also occurs and can be efficient. The ADP can facilitate informal data

exchanges by personal referrals to appropriate sources.

8.1.1 The Freedom of Information Act

In compliance with the Freedom of Information Act, unclassified data and

information, whether produced, sponsored, collected, or obtained by the Project,

reside within the public domain. It is the policy of NOAA (NOAA Directives

Manual: Chapter 21, Section 25) to supply these data and information by load,

exchange, or sale (at cost of reproduction) through the ADP Office and the

Environmental Data Service (EDS). Requests for data or information are handled

expeditiously, usually within ten days when possible.



8.1.2 Data Necessary for Project Success

Two.principal tasks of Ocean Pulse are:

1. To identify and describe the major existing ecological systems,

processes, stresses, and responses operating in the Middle Atlantic

8ight, and define their relationships and rates of change.

2. To determine the types, transport rates, fates and impacts of

pollutants, and other people-related stresses on the ecosystem.

The extent to which Ocean Pulse output furthers accurate assessments and

predictions of marine cological impacts will be a criterion of its success.

Such ·success is predicted on the type of data acquired and processed, its

statistical validity, and the quality of its technical interpretation. Evaluators

of the data administration will require user needs to be met properly with

sifficiently detailed data.

8.1.3 Initial Project Plans for Data Administration

This framework for data administration is cognizant of the unique nature

of study and the need to outline the relationships among participants. Some

guidelines for data administration standards and responsibilities follow.

8.2 Analysis of Available Systems

It may be helpful to review the technological perspective on which data

administration systems are based. Following that is an analysis of strategies

for handling data that are in common use today.

Much of today's computer information technology evolved because of a need

for a generalized tool for handling large banks of data reposited on computer

storage media (e.g., magnetic and paper tapes, disc packs, punch cards, magnetic

core). Out of this need grew Data-Base Management Systems (DBMS), Information

Retrieval Systems (IRS), and Management Systems (MIS). Though the differences

between the above systems are, in some cases, subtle, we will not concern ourselves



with individual aspects or goals of these systems, but review qualities

that are common and fundamental to all three systems.

Data administration technology can be traced back to the late fifties

when the success of "genera1ized" routi nes were fi rst di scussed. These

routines can sort the components of any data set (file) regardless of its content.

The significance of this work was the proposal that these ideas be extended

into other areas, such as data set maintenance and report generation. This

generalized processing entails the building of special programs which perform

frequently used, common, and repetitive data processing tasks. The benefits

of such a generalized approach are the elimination of program duplication, and

the amortization of one-time development costs over many applications of the

program. Generalized data processing techniques have evolved into a class of

sophisticated, generalized systems (DBMS, MIS, IRS) and have helped establish

concepts of data administration technology.

The origin of data administration technology also stems from data definition

languages development and report generator packages of the fifties. Data

definition languages provide a facility for describing data-bases that are

accessed by multiple users diverse application programs. Thus, the structure

of data can be defined to avoid special programming effort by the user.

The development of report generators stems from the need to produce

good reports without large programming efforts. In most cases, report generators

can perform complex table transformations and produce sophisticated reports

from a data-base. Thus, these allow the user to examine, process, and summarize

large volumes of data fairly easily.



The implementation of data administration tools (e.g., DBMS, IRS, MIS)

rests on organizational schemes which have been characterized in three commonly

used strategies: brute force, piggyback, data-base/key-task. We can also

call these strategies: (a) traditional/inflexible, (b) traditional/flexible,

and (c) data-base/key-task. The first word of the strategy titles (a), (b),

(c), indicates the way data are stored, i.e. using a traditional method or a

data-base. A slash separates the strategy titles into a second half which refers

to ways that data can be retrieved.

All the strateg~es use the terms, fields, records, and files. Each data
/

value or piece of raw information a system stores, retrieves, and processes is

called an elementary data item. A data item is placed into a named storage

location called a field. A collection of data items or fields is called a record.

Records are collected into logical units called files. Files are made up of
\

records having an important feature in common (e.g., cAl from a single cruise).

In the traditional/inflexible and traditional/flexible strategies, data

files are the principal structures for organizing data. These data can be

distributed into compartmentalized and clearly defined units called files which

are loosely linked in some way for retrieval purposes. In this report, a program

is a sequence of instructions written in some computer language. The program

will always use data, possibly taking the data from files, to perform desired

operations.

8.2.1 The Traditional/Inflexible Strategy

This strategy for storing and retrieving data is one of the earliest used

techniques and is still common. The word "traditional", describes ways of

storing data, means that data are collected into a file, but the data in the

file can be read only by a specific program. Each file essentially becomes

glued to a specific program, and is not versatile. The retrieval aspect of this



strategy is inflexible because a newly created program cannot simply use

data that resides within a given file. If a program is written that needs

some data in an existing file, a totally new file must be created, copying

the pertinent data from the original file (Fig. 1).

The duplication of effort involved in recopying data into the new file

is inefficient and introduces error. If an update of data in one file is made,

it must be remembered that values from data are also in other files. The result

is that one occurrence of the data is edited, while another is not. The

discrepancy may not be noticed until other uses of the file have been made.

Tracking the error is time consuming and the original inefficiency is compounded.

This approach to data storage and retrieval also does not take advantage

of recent advances in computer hardware. It is now feasible to keep relatively

high amounts of data alive in on-l ine storage systems since computer memory

is cheaper today. The development of large capacity disc devices has also

greatly reduced the costs of random-access storage. These are invitations

to adjust data storage schemes to maximize potential user benefits.

8.2.2 The Traditional/Flexible Strategy

This is the present situation in the Sandy Hook operation. As in the

traditional/inflexible strategy, this strategy, of data storage is traditional
/'\

in that data files are the'.structures used to organize data, but these data

files are constructed to allow data retrieval to become flexible. Figure 2

shows the organization of this strategy. The one-to-one correspondence between

data files and recurring programs still holds, but the files are organized so

that they are centrally located and available to a team of programmers. When

data values from existing files are needed, the values can be pulled from the

files and put into a special data pool. Data values not in the files can be

added to the special data pool.



The special data pool represents a particular set of data needed to

solve a problem. Any number of data sets can be constructed for the special

data pool. Data sets in the special data pool can be generated by a looping

routine. First, data values are taken from a data file and augmented with

additional raw data, thereby forming the special data pool. Then the special

data pool is fed into an interface system for special applications (a package

combining specialized and commercial software) which produces the desired

output. The looping routine can return to a second data file and repeat the

process until terminated.

The disadvantage of this strategy lies in the necessity to construct

a data pool from the current files. Work has already been done to put the

data values into the system, but additionai effort must be extended to write

a software package that strips the data values from existing files and also

inserts new ones into the special data pool. Any advantage that accrues to

this flexible data retrieval capability depends on the development of an

efficient data-independent interface system for special applications.

8.2.3 The Data Base/Key Task Strategy

This is the system to which we are developing. In the data-base/key

task strategy, individual files become an optional means for storing data.

Within the data-base storage system, data values are translated into computer

readable data which are then merged into a single conceptual storage entity

called a data-base. In a rough way, a data-base can be considered a giant file,

because the computer readable data are not connected in an arbitrary way. This

macrocosm called a data-base is predicated on an underlying logical system

devised by defining key-tasks. The definition of key-tasks results from a



comprehensive evaluation as to the types of data that will be collected

and the ge~eral applications required of the data. The way data are to be

used thus plays a role in where a data value is stored within the data-base

and how that data value is linked to the rest of the data-base for retrieval

purposes.

Figure 3 gives a visual breakdown of the components in the data-base/key

task strategy. The cylinder in Figire 3 represents the storage area of data

values, i.e., the data-base. Raw data values are coded, inserted into their

particular place in the data-base, and exist in that place as computer readable

. data until it is necessary to examine or update them.

The octagon in Figure 3, the general data-base interface system, contains

software that accesses data values and performs operations on data values.

If updating data values is desirable for economy or efficiency, the general

data-base interface system does to work. This system facilitates the care

and grooming of the data-base by the programmer. Since the general data-base

interface system accesses data values, it also extracts input data for the

running of routine key-task programs.

Bacause specialized sophisticated needs arise and must be accommodated,

an additional software system is available. It is called the interface

system for special applications and appears in Figure 3 as a six-sided polygon.

The interface system for special applications answers ad hoc requests and

produces solutions by skillfully utilizing data values made available via

the general data-base interface system.

An interface system for special applications is also a feature of the

previous traditional/flexible strategy. The data-independent nature of this

system is important to both strategies because the versatility of the system



is enhanced. But th~ data storage differences between the two strategies

affect the end results of the interface system for special applications.

In the traditional/flexible strategy, the data storage pool must access data

values from various files. Each file is built with its unique logical

structure. The retrieval of data values from several files requires cognizance

of each structure and, therefore, can become unwieldy and inefficient. Given

the constraints on the data accessibility, the traditional/flexible strategy

yields limited ad hoc reporting programs.

In contrast, the data-base storage system allows the interface system

for special applications a greater range. Data values reside in an interlocking

structure, the data-base, whereby they can be readily successed. Data retrieval

for any needed data values proceeds uniformly by using the general data-base

interface system as a tool. As a result, greater responsiveness to ~ hoc

requests accrues to the interface system for special applications.

One constraint on the use of the data-base/key task strategy for

administrating data lies in the definition of key-tasks. If scientists and

administrators focus on key-tasks that use much or all of the project's data

and require extensive integration of data types, then organizing the data-base

becomes complex. In the long run, the data-base/key-task approach is usually

the most expedient and cost-efficient approach for data retrieval. However,

its successful inplementation depends on the ability to identify key-tasks,

and then insure that the data processing personnel, who are responsible for

structuring and maintaining the data-base clearly understand them.



8.3 The Design and Rationale Project Data System
)

For Ocean Pulse, a system that integrates the traditional/flexible

strategy and data-base/key-task strategy is planned. A strict application

of the traditional/flexible strategy does not respond to the project's needs.

Data requests from the public are handled routinely. It is not practical to

constantly strip data from existing files to form the special data pool in

response to many ad hoc demands. Tagging into files with unique logic

structures requires regular modification of programs and subroutines to

operate similarly in different data files.

On the other hand, a data-base/key-task approach .requires a comprehensive

evaluation as to the types of data that will be collected and applications for

the data. Definition of key-tasks necessitate that the comprehensive evaluation

be an ongoing process, subject to constant revision.

There also is a concern in the scientific community that parallels the

invasion of privacy issue raised by the public in regard to large computer

systems. Scientists usually have a proprietary attitude about data they have

collected and are apprehensive about the possible premature use of the data

by others. The·data could reside in the data-base after initial reduction but

before the scientist has completely edited them (i.e., eliminated all erroneous

values). Working via a data-base can raise this concern as well as a concern

about data loss and inaccessibility in a big system environment.

In summary, a synthesis of both the traditional/flexible strategy and

data-base/key-task strategy can be successful. Most data collectors must

organize and specially structure the data values of their own files. The data

collectors do this using data formats that are designed by the Data Coordinator.



The prototype of the traditional/flexible strategy has centraJ.1y located,
)

individualized and logically unique files from which data values are pulled.

The data values are then held inside a special data pool. Within the data

system, the use of coordinated data formats, resulting in data files structured

for interface, negates the need for the special data pool. When demands are

made of the data values in the files, the interface system for special

applications, consisting of a high-level programming language, works directly

and efficiently with the specially structured data files.

8.4 The Data Catalogue

8.4.1 Background Theory

The data system diagram in Figure 4 shows the data catalogue branching

from data collection. The data catal'bgue is produced through the joint actions

of the computer technician and Data Index. The data catalogue is a resource

devised to display the current status of data collection efforts. These

collection efforts will generate many data files. The data catalogue defines

the collected files, what they contain, who has them, and whether they are

available for retrieval. The data catalogue can be compared to a card

catalogue in a library. The data catalogue is consulted to ascertain the

Project's holdings, just as the library card catalogue is consulted to ascertain

the library's holdings.

The data catalogue is organized in the following way: Each work unit

has one or more cruises undertaken to gather necessary samples. The samples

gathered from each cruise are used to measure pertinent parameters (e.g., incident

radiation, carbon assimilation rate). Each parameter has common information

reported as to its accessibility and sampling frequency (e.g., name of scientist

responsible, number of stations). These qualitative details are entered into



the data catalogue. Since the data catalogue is much smaller than the

processed data file it describes, it is an efficient tool for locating

needed data files.

8.5 Data Archival and Retrieval

Project data services utilize the interface system for special applications

(Figure 4). The interface system for special applications is geared to

operate through special data storage formats.

8.5.1 Data Formats

I The approach used on format development is the specification of a common

structure that can be applied to most data sets regardless of content. The

result is a set of formats for difference types of data which are linked by a

common framework. The consequent degree of standardization has facilitated

data retrieva1..
\
)'J Project data sets are put into a structure called network. The theory

"

behind network is as follows. Individual records having the same format are

grouped into a record~. A family of record types composes a data file.

Each record type must be linked to another record type in some way in order to

build the structure of the data file. Linkages of record types are accomplished

by connecting each record of one record type (owner records) to any other

records of other record types (member records). We say the linkages of all

owner records in record type 1 to all member records in record types 2,3 ... ,N

define a 'l-2-3•.• -N' set~. The constraints which can be put on set types

differentiate networks (e.g., given record types 1,2,3,4, let a set type include

owner records in record type 1 and member records belonging only to record type 2).



A form of network is commonly called a tree structure. Here, an owner

can have any number of members (a limb can have any number of branches), but

the convention used is that no record can act as a member record for more

than one set (e.g., no branch is attached to more than one limb). This

structure allows us to identify relationships among records in the data file.

All direct relationships are inserted onto each record as keys and usurp

a certain amount of space in the files.

8.6 Anticipated Requirements

Early in 1979 a questionnaire was circulated to task leaders to determine

what information they anticipated gathering, at least for the preliminary

phases of OP. The list of questions included type of field and laboratory

. data, how recorded, sets per station, statistical analyses, format status

and objectives.

The response was good but not unanimous. One of our objectives was to

determine requirements for building data files, etc. A certain degree of naivete

and resistance appeared from some quarters and some guidance is needed to

direct investigations in adopting adequate record keeping techniques to

inp1ement computer file record development. Design of formats was requested

by investigations at Milford associated with contaminant biochemistry. The

genetics group has a format in development. Other format design is needed for

pathology, microbiology and some chemistry (unless the present heavy metals format

is adopted).

,



Data volumes have been estimated as follows (Table 8) for the following

investi gators:

Thomas
Robertson
Phoe1

Mahoney
Cohn

Reid
Radosh

0' Reilly
Evans
Waldhauer

Zdanowicz

MacKenzie

Longwell

Murchelano
Ziskowski

Calabrese
Gould
Thurberg
Graikoski

This results in
year.

15,000
cards per year
1,000 cards

approx. 2,000 cards per year
approx. 1,000 cards per year

25,000 cards per year
7,500 ca rds per yea r

20,000 cards per year
50,000 cards per year (2 cruises per year)
4,000 cards per year (2 crui ses per year)

7,000 cards per year

1,000 cards per year

?

1,000 cards per year

16,000 cards per year
7,200 cards per year (2 cruises per year)
4,800 cards per year (2 cruises per year

a minimum of l87K cards per year on 2 cruises per

The index data file types, and analysis programs are summarized in

Table 9.

Future problems are difficult to identify but one procedure should be

made eminently clear. The investigators making observations at a given station

should all use the same station identification. The integration of data between

disciplines will be effectively conducted only if key indices can be identified

between files. Contractura1 arrangements with a systems analyst would be an

effective procedure to develop a viable structure for data management.



NODC has developed a number of formats which are on file in the Sandy

Hook computer offices. For general information and review the following

are available:

Seabed Oxygen Consumption
Water Column Respiration
Index of Relative Importance (stomach analysis)
Zooplankton
Intertidal/Subtidal (sediment, specie, fish, stomach)
Marine Invertebrate Patholo9Y
Trace Elements (heavy metal)
Mutagenesis
Photosynthetically Active Radiation
Primary Productivity 2
Hydrocarbon 2 (sediment, organism, water)
Fish Resource Assessment
Hydrocarbon 1
Primary Productivity
Phytoplankton Specie
Specimen Feeding Studies (food sample content)
Fish Resource Assessment (shellfish)
Water Physic and Chemistry
Marine Fish Pathology
Bacteriology
Fin Rot
Benthic Macrofauna File
Metal in Organisms, Sediment and Water
Sediment Characteristics
Benthic Organisms



Benthic Ocean- Prim. Micro- Contam- Patho-
Resources ography Prod. Chemistry biology Surf clam inants biology Genetics

Greig
Zdanowicz Graikoski

Thomas Drax1er Calabrese r~urc he1ano
Reid Robertson 0' Reilly Waldhauer Cohn Gould Ziskowski
Radosh Phoel Evans l11atte Mahoney MacKenzie Thurberg Sawyer Longwell

Cruise
Sta. Grab
Date
Time (local GMT)
latitude
longitude
°C temperature (Bot. X

Surf. )
Depth
Salinity X
D.O. X
Sediments X

. % silt/clay X
%organic X
Sorting index X
Macrofauna X X
Metals X X X
Primary productivity X X
Chlorophyll X
Nutrients X X
Hydrocarbons
Blood chem. X
Pathology X

.Enzymes X
Oxygen consumption X X
Bacteria X X
Chemistry X X 7 X X
Genetics X ..

1\

Phytoplankton Dist./Abund. X X
Zoop1 ankton
Applications Programs
Diversity/equitabi1ity X ·XCluster analysis X X
length frequency X



Table 6. Ocean Pulse interaction between studies and enviralUlllllltal elements. ,
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Winter
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Windowpane
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Red
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9. FUTURE PERSPECTIVES

We have passed through a description of several stages in the-development

of Ocean Pulse activities: the examination or sampling procedures required

for collecting laboratory and field survey data, then the treatment phase

with applications of statistical methods, next the diagnosis phase synthesizing

the various research unit results with feedback refinement procedures. The

final step in the series is construction of recommendations to implement

management practices for ocean welfare. Recommendations will draw from some

predicting capacity to anticip~te emergencies. This predictiye ability may

evolve from the development of ecosystem models. Although Odean Pulse will

be primarily concerned with biological aspects of modeling, the economic models

must also be considered.

Future coastal ocean management activities could proceed along these
\

steps: )' I

1. Construct a small-scale model based on well established ecological

links. Derivations include food chain and energy budget dynamics.

2. Expand the elementary model to a total ecosystem model. Linkages

between the several compartmental model systems.

3. Extend implications of the biological model to economic and socio­

logical impacts. This action ~ould present an integrated approach

to a national coastal ocean management system.

4. Utilize techniques of dynamic programming to develop such a management

system. This process will define those conditions which must be

satisfied by an optimal time -- staged decision process. We will

discover what conditions will result in a best strategy for monitoring

ocean we1fa re.



The biological models are concerned with energy flow and yiel~s. The

ultimate operating model, however, will probably be the economic involving

maximization of benefits. Research will be supported only from the political

. premise that assures certain things are being done to support a "status quo"

of the environment.

In the absence of attitudinal studies toward the marine environment, we

can infer pUblic attitudes are derived from the common-property status of

marine resources. Environmental requirements affecting water quality, resource

abundance, palatability, and food chain continuity are paramount. Maintenance

of the aesthetic impressions of a shoreline or fishing experience is also

important. We must understand these as given rights and benefits to the

community of citizens. Considerations, such as these will ultimately govern

management actions.

•



Table 7. Swmnary of sUitability of various statistical methods for each of the study disciplines. Coding as foUows
(1) definitely appr~priatel and (2) possibly useful.
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APPENDIX I.

Excerpts from a paper on' the accuracy of abundance indices from research

vessel surveys by Grosslein (1979) are relevant where anala90us samplin9

conditions in the Ocean Pulse area prevail.

"In order to help evaluate the cost-benefit ratio of surveys it is necessary

to have some idea of the magnitude of change in stock size that is considered

significant, as well as the magnitude of change we are able to detect and with

that probability." Clearly one of the most important questions is whether

surveys can measure changes in abundance with sufficient accuracy to permit

meaningful assessment of the short-term affects of fishing. However, it is

important to remember that we are also concerned with long-term changes involving

not just a few pri,ority species but the entire groundfish community. In general,

a lower level of accuracy probably would suffice for monitoring long-term

changes than in the case of assessment on a year-to-year basis. My principal

aim here is to provide some information on what accuracy is possible with

catch-per-haul statistics from research vessel surveys.

"When considering accuracy of estimates, we must distinguish between

statistical precision or sampling error (variance) and bias. That is, an

estimate may be very precise in terms of a small variance but have a large

bias, and therefore not be very accurate. In our problem we are concerned

not only with precision but also with the possible biases in the survey abundance

index (catchability coefficient) between the relative abundance index and the

true absolute abundance of the stock. The next step is to estimate this

coefficient so that we can estimate actual total numbers in the population."



Statistical characteristics of trawl catch data .. "As is well known,

trawl catches are highly variable even within relatively restricted areas

because fish are not uniformly distributed; and random trawl hauls result

in a frequency distribution of catches which is highly skewness is that the

variance is generally much larger than the mean resulting in very imprecise

(although unbiased in the statistical sense) estimates of the mean, and even

less reliable estimates of the variance itself, except with very large sample

-sizes. That is, the standard error associated with the variance is particularly

susceptible to departures from normality, and without a reliable estimate of the

variance of course, it is not possible to calculate meaningful confidence limits

about the mean •••

"A standard approach to this general problem is to stratify the population

to be sampled into high and low density units or strata, and then sample

randomly within individual strata within each of which skewness is then reduced.

Control of variability in this manner is one of the primary advantages to be

gained from the technique of stratified random sampling. However, in the case

of trawl catcher considerable skewness remains even after stratification ...

"Another well known approach is to try to find a transformation whi ch

normalizes the frequency distribution of variables. We have found that on

the average, stratum variances of trawl catches are approximately proportional

to the square of the mean, i.e. the standard deviation is proportional to the

mean•••

"This relation indicates that a log transformation is appropriate and

such a transformation tends to normalize the data and stabilize the variance

(i.e. make means and variances independent). Also the log transformation converts

multiplicative effects into linear additive effects. In terms of our problem



of estimating proportional changes in abundance, this means that linear

changes on a log scale represent estimates of multiple or factor changes on

the original scale. That is, the anti-log of the difference between two

log means represents the proportionality constant relating means in the linear

scale. The estimates unbiased in the statistical sense, but it should be

noted that the re-transformed mean is a biased estimate of the true mean on the

linear-scale (an unbiased estimate is theoretically possible).

- Calculation of stratified mean and variance

liThe basic index of abundance dealt with here is the stratified mean

catch per standard haul, calculated by weighting each stratum mean according

to the proportional size (area) of the stratum relative to all strata in

the set. The variance of a stratified mean is similarly derived by weighting

each stratum variance in proportion to the stratum area and inversely according

to the number of hauls in the stratum. u

Examples -of precision on log scale

On the log scale the variances are yearly stabilized and the CV's

of stratified means are on the order of 10-15 percent for the same species

and strata. However, note that now we are interested in the absolute rather

than relative size of-the standard deviation. For haddock ~2 S.O.'s (~.40)

corresponds to +50 percent of the linear scale. Thus there is no great

-improvement in the size of difference (proportional change on linear scale)

we are able to detect as compared with the non-transformed scale, but we have

more efficient estimates of those differences over the range of abundance levels,

and the estimated confidence limits more closely approximate true 95 percent

confidence intervals.



The most significant feature of these data is that they indicate the

present survey cannot detect with high probability, proportional changes

in abundance which are less than a factor of about 2. That is, the log

difference between the lower and upper limits of the 95 percent c.r. is

about 0.7 corresponding to a factor difference of 2 on the linear scale;

and to be very sure that two means are significantly different there must be

no overlap in the 95 percent confidence intervals.

"The most serious biases in commercial abundance data arise from unknown

changes in the effective unit of effort usually related to economic or

technological factors. Even with standard gear however, bias can result simply

from variations in availability of fish. With proper sample design the

research changes in availability. For example the catchability coefficient

for a given species and research trawl may change due to a change in vertical

distribution of the species, in response to some environmental factor or even

as a function type intuitively would seem to be much greater for a species

for which the trawl has a very low efficiency."
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APPENDIX II I.

An interesting approach to analyses of benthic populations in,relation

to pollution paid in the New York Bight was presented by Walker, Saila and

Anderson (1979). Their approach was to search for patterns among the physical

variates and then search for related patterns among biological variates.

Some of their rationale is relevant to Ocean Pulse research.

"The correspondence of geographi ca1 space and phys ica1 space assumed on

the classical analysis tempts one to treat the station grid of the New York Bight
-

exactly as if it were a cornfield. However, we are not sampling from a

geographical space which is uniform except for externally imposed treatments,

as in the cornfield example. Instead, we are searching for the effect of the

input of various types of waste being dumped in the New York Bight, where

biological variability seen as the result of the dumping is superimposed on

substantial microenvironmental variability••.

"We are in the position of the agricultural experimenter who is trying

to determine the response of corn to multiple treatment inputs, the spatial

extent of which is not known at the time of the sampling. It is as if corn

were not planted on a field of uniform soil, but within the field there exists

and unknown mixture of soil types. In addition, it is not possible to return

to the same geographical position during each sampling interval and expect

to find the same soil characteristics of fertilizer levels. Thus, all

semblance of treatment plots have disappeared because there is no longer any

cQrrespondence between geographical position and treatment•..

"Within the benthic sample data set, the way we have chosen to face

these problems in-analysis is to break up the continuous response variables of

the sediments into discrete levels: Four for sediment mean grain-size and two

each for heavy metals and percent organic matter. In this way we can test



for the response of the organisms sampled to 16 combinations of the three

variables (16 strata). We have defined a new set of 16 variates, and we

examine the response of benthic macroinvertebrates to these variates ...

"Because the physical variates are highly correlated, it is clear that

we are not able to test for any main effects (i.e., the response of any

organism to one of the variables independent of the other variables). Rather,

we are limited to testing for the various combinations of the three variates

which exist in"the data set. Because of the high intercorrelation among the

variables, many empty cells are to be expected within the cells of the strata

thus defined. The geographical space of the cornfield has been replaced with

a variable space. Given the assumption that the level of occurrence of specific

"benthic organisms is dependent upon these variates, we are in a position to

test for the biological response of the system to physical and chemical

surroundings •••

"The discriminant functions are the best linear combinations for predicting

strata from the biological information. For each species, the relative

magnitude of the coefficients of the discriminant functions over strata

indicates the relative importance of that species in predicting the various

strata••.

"There are several advantages inherent in this approach. (1) The problem

of microhabitat variability is dealt-with by stratifying on the basis of physical

characteristics of each grab sample. Since the microhabitat variability

presumably influences the variability in species abundances, estimates of species

abundance which ignore microhabitat effects are apt to be much more variable

than estimates which take microhabitat influences into account. As a direct

consequence of judicious stratification the estimates of species abundance

can be much more precise. However, the degree of information precision should

be empirically tested. (2) It is posible to obtain estimates of known

precision for strata of particular interest. Since the information in each



grab can be worked up in two steps, it is possible to allocate analytical

effort much more efficiently. Species counts may be made for a few of the

grabs in some strata, and many more grabs for strata of particular concern.

For· a particular value of variance for species abundance, increased sample

size reduces the spread of confidence limits on a stable mean density estimate.

(3) Even if it·is realized that the monitoring program must fall short of

. the desired scope and precision, it can ofcus on a few key questions. Due

to limited financial resources, it may not be practical to monitor the

abundances of a large number of species.
/

may have to be ignored. Of the remaining

Rare of highly jvariable species
I

list a few key species can be selected

in order to monitor the influence of sludge dumping with sufficient precision

·to say something about shifts in species abundance over time.

In attempting to assess the stability of benthic faunal populations,

several populations parameters are important. True inSight\iill be possible

when interpretation of density changes can be related to a detailed knowledge

of life history, age or stage-specific fecundity and mortality, and survival

strategies of species under consideration. For most benthic organisms this

type of background information is sorely lacking, and as a result it is

difficult to determine if density changes are due to natural variations in the

population or the effects of a pol~utant.

From data on abundance of a few common conservative species and their

within strata variations over time, the analysis could move into a third step;

that of size frequency (or age frequency) estimation. It is here that a real

jump in information about the population stability of selected species might

be expected."



This approach to the problem differs from tradition techniques which

either search for patterns in biological variates and attempt to interpret

them as responses to physical variables or search for patterns of relation­

ship in two sets of variates simultaneously. This technique could be useful

in present Ocean Pulse analyses.



Table 1. Stratum ~eans (catch/haul, pounds) and viariaces for.haddock in three sampling strata on Gebrges
Ba~k•. Albatross IV surveys. ,

STRATUM 16 STRATUM 19 STRATUM 20

Std. Std. Std.
No. devia- No. devia- ·No. devia-

CRUISE haUls Mean Variance tion hauls Mean Variance tion .hauls Mean Variance tion

63-05 7 41 2,740 52 4 126 22,442 150 3 7 52 7
63-07 7 101 4,330 66 4 291 66,992 259 4 115 33,379 183.
64-01 10 41 857 2?1 7 '147 37,875 194 5 37 1,322 36
64-210 8 300 338,823 582 5 364 209,248 457 5 356 70,072 264
64-13 7 148 31,926 179 6 168 . 26,652 163 5 335 155,074 39ft
65-2 6 73 6,309 80 6 392 . 243,932 494 5 21 338 18
65-510 .8. 405 682,555 826 6 800 2,O.19,7B1t 1421 5 618 188,942 435

. 65-14 . ' 7 78 3,266 51 5 171 14,377 120 5 332 160,830 401
66-601 7 73 17,351 132 6 49 6,058 7~ 5 43 1,243 , 35
66-614 7 62 1,423 38 6 54 15,495 124 5 126 11,584 108
67-721· 8 14 564 2/1 9, 52 4,096 . 64 6 37 4,140 65
68-803 9 49 5,533 74 8 42 1,189 34 6 13 351 19
68-817 8 19 2,850 53 9 0 - - 6 25 3,514 60
69-902 14 71 26,570 163 8 45 1,831 43 6 3 41 6
69-908 10 7 185 14 9 6 124 11 6 23 2,610 51
6.9..,911 12 4 117 ,11 9 7 413 20 6 16 1,137 34 ,
70-703 10 130 120,926 348 8 11' 409 20 5 5 16 '9 j
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:v1e 4. Stratified mean catch per haul (lb, log scale) ande .
measures of precision for selected species. Albatross IV
fall surveys, Strata 13-25.

YELLOWTAIL

s.D.1 Mean.:!: Factor
Year Mean Variance S.D. Uean 2 S.D. 2 S.D. diff•
1;;63 1.97 •026805 .1637 .08 .33 1.64-2.30 1.9
1964 1.41 .037142 .1927 .14 .38 1.03-1.79 2.1
1965 1.32 .029119 .1706 .13 .34 .98-1.66 2.0

1966 ·0.96 .025860 .1608 .17 .32 .64-1.28 1.9
1967 1.32 .027724 .1665 .13 .33 .99-1.65 1.9

·3.968 1.40 .038260 .1956 .14 .39 1.01-1. 79 2.2

1969 1.35 .025200 .1587 .12 .32 1.03-1.67 1.9
1970 0.96 .•0204 .1428 .15 .28 .68-1.24 1.8

HADDOCK
.~~~~;~:-',

1963 3.34 .052176 .2284 .07 .46 2.88-3.80 2.5.::,;., ....••,
,'-;~~~~,

1964 3.86 .080315 .2834 .07 .57 3.29-4.43 3.1i;'t~'$~';:

:~~I
J.965 4.02 .042355 .2058 .05 .41 3.61-4.43 2.3

~66. 2.43 .044512 .2110 .09 .42 2.01-2.85 2.3

:!0~: 1967 2.45 .052075 .2282. .09 .46 1.99-2.91 2.5

(~
196"8 1.15 .029587 .1720 .15 .34 0.81-1.49 2.0

U69 1.10 .021536 .1467 .13 .29 0,81-1.39 1.8
.- . 1970 1.35 .0345 .1857 .14 .37 0.98-1. 72 2.1
<~~:~~~. .•

;. -. COD

:'963 1.75 .084829 .2912 .17 .58 1.17-2.33 3.2

1964 1.29 .056270 .2372 .18 .47 0.82-1. 76 2.6

1965 1.32 .041737 .2043 .15 .41 0.91-1. 73 2.2

1966 1.20 .040673 .2017 .17 .40 0.80-1.60 2.2

1967 1.74· .047301 .2175 .12 .44 1.30-2.18 2.4

:.968 1.04 .031888 .1786 .17 .36 0.68-1.40 2.1

:;;69 1.32 .025381 .1593 .12 .32 1.00-1.64 1.9

1970 1.35 .0332 .1822 .13 .36 0.99-1. 71 2.1
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APPLICATIONS

None of the quantites involved in Ocean 'Pulse research can beiobserved

or measured throughout the whole population. Conclusions will be based on

the attributes of samples considered representative. If the sampling is good

the conclusions derived will differ little from reality. One of the tasks

expected will be that of forecasting. In order to achieve this goal will

require a thorough grasp of individual subjects and indices developed in

allied fields. Some recognition of limitations is necessary for deriving

projections of events. The correlation of time series will very likely be

employed and the topic will be a part of the synthesis' of research finding.

At the present time the array of test species and disciplines is noted in

Table I. Each of the 15 activities considered a promisin9 arbiter of

environmental quality. However, the efficiency, reproductibility and other

attributes of the studies will remain to be evaluated in many cases. The

selection of test species has been derived from the availability encountered
..

in sampling gear during early cruises. The subjects range from phytoplankton,

constituent chemicals and chlorophyll through particulate and filter feeding

invertebrates to species used for harvest. The suitability of various

statistical tests are arrayed below for each of the study disciplines. However,

it must be remembered that after a basic series of results are abailable there

will be material for determining time series variation and analysis of

covariance between disciplines. The most powerful test of effects will

prevail when reinforcements are found to occur between several studies.



•

,.

o
o
o
o
o

r: ..
o '­

.t:I '"'- on
.. 0
VI:'.ox
'-w

~

~
I·

-...-
~:;;

..
v.... c: ~ ....... .. 0 ....- '"0 ... 0

~,~
c: - .. ...
'" CO - V

[0 ... .t:I t' ....... ;c ... ... ..
< c: _OO' I .. .. 'I- ...

l1 0 .. .... 00- .. .... .. e ..- - ..
~

.0> .. ... .... ..... "' .. '"~ .. .. .t:I -- oO' '"
_0 c: ... V ..... :c:

c: c: on 0 !: -0 ... - 0 - .. .. 0 .. - _ 0' -
'" 0 .. .. _ V .. ~ .. '" -- .>< ... 0- oO'

~
.. V .. 0 ....< ... f 15~ ..... .. .. ..... ' E... V .. - ~

.. ... ... c: ... '"0

SPECIES 0 .. '" ~
.. .. - c: '" Q. .. .. -

U VI VI U 0.. 0.. > < Z :::> '" 0.. ...J

ater
Temperature X
Constituents X X

hlorophyll X
hytoplankton X X X X
diments X X X
nthos X X X· X· X
kton X X· X·
folYsids X· X
Isopods X
Euphaunds X
Crangon X
Rock Crab
'Lobster X
TelTinQid Mussel X X 'X
SCallop X X
Spisula X X

-Arctica X
Herring X X
Flounders •

Winter X* **
Yellowtail X '-X X* **
Windowpane x* **

Hake
Red **
Silver, X X

- AIIInodytes X
Cod X X X* **
Haddock X X X* **

Table I

W

•

C
P
Se
Be
He

~- Crustacean
. *- Fisfish eggs available
.**- Fish larvae and gonad developement
0- Eggs and larval invertebrat.
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GLOSSARY OF SELECTED STATISTICAL TERMS*

Confidence Interval

Ifit is possible to define two statistics tl and tz (functions of

sample values only) such that, 0 being a parameter under estimate,

p{ tl <0 z) = a

where a is some fixed probability, the interval between tl and tz is called

a confidence interval. The assertion that e lies in this interval will be true,

on the average, in a proportion a of the cases when the assertion is made.

Correlation

In its most general sense corelation denoted the interdependence between

quantitative or qualitative data. The concept is quite general and may be

extended to more than two variates.

The word is most frequently used in a somewhat narrower sense to denote

the relationship between measurable variates or ranks.

Correlation, Coefficient of

A correlation coefficient is a measure of the interdependence between two

variates. It is usually a pure number which varies between -1 and 1 with the

intermediate value of zero indicating the absence of correlation, but not

necessarily the independence of the variates. The limiting values indicate

perfect negative or positive correlation.

If there are two sets of observations xl"'Xn and Yl" 'Yn' and a score

say a
J
•• (for the x-group) and b ..
J JJ

of correlation may be defined as

is alloted to each pair of individuals,

the y-group), a generalized coefficient

Ea .• b ••
r=- 1-J 1-J

I{ Ea ••2 Eb •.2 )
1-J 1-J

where E is a summation over all values of i and j (i I j) from 1 to n.

(for

* Adopted from Kendall ,'M. B. and W. R. Buckland. A Dictionary of Statistical
Terms. Hafner Publ. Co., 575 p. 2nd ed.



If positive values of one variate are associated with positive values

of the other (measured from their means) the correlation is sometimes said

to be direct or positive; as contrasted with the contrary case, when it is

said to be inverse or negative.

There are numerous other correlation coefficients of a different character.

Degrees of Freedom

This term is used in. statistics in slightly different senses. It was

introduced by Fisher on the analogy of the idea of degrees of freedom of a

dynamical system, that is to say the number of independent coordinate values

which are necessary to determine it. In this sense the degrees of freedom

of a set of observations is the number of values which could be assigned

arbitrarily within the specification of the system; for example, in a sample

of constant size n grouped into k intervals there are k-l degrees of freedom

because, if k-l frequencies are specified, the other is determined by the

total size.n; and in a contingency table of p rows and q columns with fixed

marginal totals there are (~l), (q-l) degrees of freedom.

From a different viewpoint the expression "degrees of freedom" is also

used to denote the number of independent comparisons which can be made between

the members of a sample.

Eigenvalue

The characteristic root ofa square matrix A is a value A such that

[A-AI] = ), where I is the identity matrix. For a pxp matrix there are,

ingeneral, p such roots. They are also known as Latent Roots and Characteristic

Roots.



The corresponding row-vestors u or column-vectors v for which

uA = AU or Av = AV

are called characteristic vectors.

Exponential Curve

A series of observations ordered in time which has a constant, or

approximately constant, rate of increase can be represented over a long period

by the curve:
bt

y = ae

where a and b are constants and t is time. This. or some simple transformation,

is called the exponential curve. The fitting of an exponential trend of this

form by the method of least squares is facilitated by transforming into the

logarithmic form:

Goodness Fit

In general, the goodness of agreement between an observed set of values

and a second set which are derived wholly or partly on a hypothetical basis,

that is to say, derive from the "fitting" of a model to the data. The term

is used especially in relation to the fitting of theoretical distributions to

observation and the fitting of regression lines. The excellence of the fit

is often measured by some criteria depending on the squares of differences

between observed and theoretical value, and if the criterion has a minimum

value the corresponding fit is said to be "best".
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Graeco-Latin Square

An extension of the Latin-square. Formally, it is an arrangement in

a square of two sets of letters (say A, B, ... etc. and a, B, ... etc.),

one of each in each cell of the square, such that no Roman letter occurs

more than once in the same row or column, no Greek letter occurs more than

once in the same row or column, and no combination of the two occurs more than

once anywhere. For example, a 4 x 4 squa re of thi s ki nd is

Aa BB Cy Do
By Ao Da CB
Co Dy AB Ba
DB Ca Bo Ay

The arrangement is used in experimental designs to allocate treatment

of three factors so that all comparisons are orthogonal.

Latin Square

One of the basic statistical designs for experiments which aim at removing

from the experimental error the variation from two sources, whicy may be

identified with the rows and columns of the square. In such a design the

allocation of k experimental treatments in the cells of a k by k (Latin)

square is such that each treatment occurs exactly once in each row or column.

A specimen design for a 5 x 5 square with five treatments, A, B, C, 0, and E

is as fo11 ows :

A
B
C
o
E

B
A
o
E
C

C
E
A
B
o

o
C
E
A
B

E
o
B
C
A

"
"

The earliest recorded discussion of the Latin square was given by Euler (1782)

but it occurs in puzzles at a much earlier date. Its introduction into

experimental design is due to R. A. Fisher.



Level of Significance

Many statistical tests of hypotheses depend on the use of the'proability

distributions of a statistic t chosen for the purpose of the particular test.

When the hypothesis is true this distribution has aknown form (at least

approximately) and the probability P(t>tl) or P(t<to) can be determined for

assigned to to tl' The acceptability of the hypothesis is usually discussed,

in terms of the values of t observed; if they have a small probability, in

~he sense of falling outside the range to to t 1 (P(t>tl) and p(t<to ) small)

the hypothesis is rejected. The probabilities P(t>tl) and p(t<to ) are called

levels of significance and are usually expressed as percentages, e.g. 5 per cent.

The actual values are, of course, arbitrary, but popular values are 5, 1 and

O~1 per cent. Thus, for example, the expression "t falls above the 5 per cent

level of significance" means that the observed value of t is greater than tl

where the probability of all values greater than tl is 0.05; t) is called the

upper 5 per cent significance point, and similarly for the lower significance

point to'

Model

A model is a formalized expression of a theory or the causal situation which

is regarded as having generated observed data. In statistical analysis the model

is generally expressed in symbols, that is to say in a mathematical form, but

diagrammatic models are also found. The 'word has recently become very popular

and possibly somewhat overworked.



Nested Sampling

A term used in two somewhat. different senses: (1) as equiva~ent to

mul ti -stage sampl ing because the hi gher-stage units are "nested" in the

lower-stage units; (2) where the sampling is such that certain units are

imbedded in larger units which form part of the whole sample, e.g. the entry­

plots of clusters are "nested" in this sense.

Precision

In exact usage precision is distinguished from accuracy. The latter

refers to closeness of an observation to the quantity intended to be observed.

Precision is a quality associated with a class of meaSurements and refers to

the way in which repeated observations conform to themselves; and in a somewhat

narrower sense refers to the dispersion of the observations, or some measure

of it, whether or not the mean value around which the dispersion is measured

approximates to the "true" value. In general the precision of an estimator

varies with the square root of the number of observations upon which it is

based.

Probit

The normal equivalent· deviate increased by 5 in order to make negative

values very rare. The word was suggested by Bliss (1934) as a contraction

of "probabi 1ity unit".

Random

This work may be taken as representing an undefined idea, or, if defined,

must be expressed in terms of the concept of probability. A process of

selection applied to a set of objects is said to be random if it gives to each

one an equal chance of being chosen. Generally, the use of the work "random"

implies that the process under consideration is in some sense probabilistic.



Regression

This term was originally used by Galton to indicate certain relationships

in the theory of heredity but it has come to mean the statistical method

developed to investigate those relationships.

If a variate y consists of two components, a variate and a systematic

element f(X) depending on a variable X,

y = f(X)+e:

then the regression of y on X is the equation

Y = f(X)

where it is supposed that e: has zero expectation. The definition remains valid,

if X, instead of being a single variable, refers to a set of variables Xl' X2 ,

etc.

In particular, X itself may be given as the values of a variate, in which

case the regression of y on x may be regarded as expressing the dependence of

the mean of y (for given x) on the corresponding x:

E(ylx) = f(x).

The most frequently considered form of f(x) is a polynomial, particularly

a linear function, giving the regression of y on X

y = ao+aJx

or, for p variables

y = ao+a1X1+···+SpXp

Such regressions are called regression equations. The X's are called

"independent", "predi cated" vari ab les, "predictors" or "regress ions".

yis called the "depenedent variate", "predictand" or "regressand".



Signi ficance

An effect is said to be significant if the value of the statistic used

to test it lies outside acceptable limits, that is to say, if the hypothesis

that the·effect is not present is rejected. A test of significance is one

which, by use of a test-statistic, purports to provide a test of the hypothesis

that the effect is absent. By extension the critical values of the statistics

are themselves called significant.

Standard Deviation

The most widely used measure of dispersion of a frequency distribution.

It is equal to the positive square root of the variance.

Variance

The variance is the second moment of a frequency distribution taken

about the arithmetic mean as the origin namely

..

..
- 2

(Z-Ill ) elF

where III is the mean and F the distribution function, It is a quadratic

mean in hte .sense that it is the mean of the squares of variations from the

arithmetic mean. It may also be regarded as one-half of the mean-square of

differences of all possible pairs of variate-values.

·Variance-Analysis

The total variation displayed by a set of observations, as measured by the

sums of squares of devisions from the mean, may in certain circumstances be

separated into components associated with defined sources of variation used

as criteria of classification for the observations. Such an analysis is called

an analysis of variance, although in the strict sense it is an analysis of sums

of squares. Many standard situations can be reduced to the variance-analysis form.


