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Appendix A1: Surfclams in New York and New Jersey state waters1

                                                           
1Many thanks to Jeff Normant of the New Jersey Division of Fish and Wildlife and Debra Barnes and 
Jennifer O’Dwyer of the New York State Department of Environmental Conservation for data and assistance 
with this report. 
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The states of New York and New Jersey support surfclam fisheries in their territorial waters not covered 
by the NEFSC clam survey.  The two states have carried out their own annual or semi-annual surveys of 
the resource since 1992 and 1988, respectively.  Commercial and survey data from state waters are 
important in this assessment of the federally managed EEZ stock given the biological linkage between 
state waters and the EEZ, the productivity and importance of fisheries in state waters, and the possibility 
of environmental effects in southern surfclam habitat.  New York and New Jersey state waters have 
historically been excellent habitat for surfclams, but there is evidence of declining recruitment to the 
population in both states. The percentage of landings harvested from state waters has been falling since 
2001 (Figure 1). 

 
The New York and New Jersey state surveys 
 
The New Jersey State survey is conducted annually by the New Jersey Department of Environmental 
Protection from a commercial clam vessel with a commercial hydraulic dredge, most recently the F/V 
Ocean Bird. The survey has been conducted since 1988, and has followed a stratified random sampling 
protocol since 1994. The survey area is divided into regions covering the whole New Jersey coast, and 
each region has 3 one mile wide strata, parallel to the coast, covering surfclam habitat out to the 3-mile 
limit of state waters (Figure 2). Each survey does between 250 and 330 five minute tows, measuring the 
tow volume in bushels, then counting and measuring a known volume of surfclams for population 
estimates and length frequencies. Grab samples of the sediment are also taken.  
 
Data from the state of New Jersey available for this appendix includes annual state surfclam survey 
numbers and lengths through 2012 and grab samples for juvenile surfclams through 2011. Surfclam 
landings from New Jersey state waters are available from 1989-2012.  
 
The New York surfclam survey is conducted by the New York Department of Environmental 
Conservation approximately every three years. They use a commercial clam vessel, most recently the F/V 
Ocean Girl, with a hydraulic dredge. The survey area is divided into four regions which span the southern 
shore of Long Island. The three westernmost regions are subdivided into three mile wide strata (Figure 3). 
The most recent surveys have taken place in the summer or fall, had an average of 236 stations, and used 
a random stratified sampling technique. Tows are three minutes long, the total volume of each tow is 
measured in bushels, and half a bushel of surfclams from each tow is measured and counted for 
population estimates and length frequencies. A picture of the dredge used is shown in Figure 4.  
 
Data from New York State are from the 2002, 2005, 2006, 2008 and 2012 state surfclam surveys.  Total 
numbers, densities and length frequencies are available for all years and ages are available for all years 
except 2012. Surfclam landings from New York state waters are available through 2011.  
 
Results 
 
Both states have seen a significant decrease in the population of surfclams (Figure 5). The peak 
population of surfclams in New Jersey in recent years seems to have occurred in 1996, a few years before 
the peak in biomass in the EEZ in 1998-1999. The data available to us from New York do not go back far 
enough to see evidence of a concurrent population peak. 
 
Despite the decline in numbers of clams in surveys since 2002, landings in New York stayed remained 
relatively high through 2006 (Figure 6). There was a very large harvest limit set in 2004 (930,000 
bushels) and it was almost reached, making the landings from New York from that year almost double 
what they had been in years before. In 2010 and 2011, landings were around 200,000 bushels annually. 
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Surfclam landings for human consumption from New Jersey state waters have fallen from a high of about 
700,000 bushels in 2003 to less than 100,000 in 2005 and to near zero levels since 2006. Since the early 
2000s, a few tens of thousands of bushels of surfclams have been harvested annually from “prohibited 
waters” (where they are not allowed to be sold for human consumption due to contamination) to be sold 
as bait (Figure 7). About a third of the surfclam standing stock in New Jersey is in prohibited waters 
(Figure 8). 
 
In the 2000s, the length composition of surfclams in New Jersey was narrow and composed of only larger 
surfclams, indicating a lack of new recruitment. However, recent survey data shows some smaller clams 
recruiting to the population (Figure 9).  The 2011 NEFSC clam survey also showed evidence of some 
recruitment off New Jersey and New York.  
 
Surfclams from the New York surveys conducted in 2005 and 2006 were larger on average than those 
collected in 2002, yet some smaller clams were seen in the 2008 and 2012 surveys, mirroring the bump in 
recruitment seen in the New Jersey and NEFSC surveys (Figure 10).  
 
Surfclam densities have historically been high in the inshore areas surveyed by New Jersey and New 
York states compared to offshore areas south of Georges Bank surveyed by NEFSC (Figure 12).  
However, inshore densities appear to be falling recently towards levels typical of more unproductive 
offshore areas (Figure 11). However, the comparisons in Figure 11 are approximate due to differences in 
dredge design, capture efficiency and size selectivity. Numbers have been falling in all strata in New 
Jersey (Figure 13). 
 
Recently it appears surfclams in New York and New Jersey have been unable to resupply their aging 
populations with new recruits. This could be happening because there is not enough successful spawning 
occurring and the supply of larvae is not there, or because smaller surfclams are dying before they are 
available to a survey or commercial dredge.  
 
In New Jersey, grab sample data collected regularly since 1994 from the area of the survey show that 
juvenile surfclams are setting successfully out of the plankton (Figure 14). Some years have been better 
than others with occasional larger sets such as the ones seen in 2005 and 2009, a typical pattern for 
bivalve recruitment. This data does not show any downward trend in juvenile surfclams that might 
explain the decline in older surfclams of fishable size.  
 
Surfclam age frequencies from the New York surveys in 2002, 2005, 2006 and 2008 (Figure 15) show 
that surfclams of all ages are present with recognizable ~1996, ~1991 and ~1988 year classes which can 
be followed.  The 2008 data also reflect the recent recruitment seen in the survey size frequencies in both 
New York and New Jersey. Age data from the Long Island region of the NEFSC survey are not available, 
but recognizable year classes seen in the New Jersey region included one in 1992.   
 
Length-at-age data from the New York surveys (figure 16) indicate there was no significant change in 
growth rate from 2002 through 2008, but all regions and strata were lumped together so spatial changes 
may be masked. 
 
Exploitation rates (landings / survey abundance) were calculated for surfclams in both NJ and NY state 
waters (Figure 17).  The data suggest that exploitation rates in NJ waters decreased from about 4% in 
1996 to 2% in 1997-1998 then increased to about 6% in 2002 before falling to zero by 2005 as the fishery 
for human consumption all but ceased.  The limited data for NY indicate that exploitation increased from 
2002 to 2008 (landings data were not available for NY in 2012). These simple exploitation rates provide 
useful information about relative trends in fishing mortality, but they assume all the surfclams in the path 
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of the survey dredge are captured, which is almost never true.  The capture efficiency of a clam dredge is 
almost always less than one, so exploitation rates calculated here for surfclams in state waters are 
probably overestimated. NJ landings for use as bait were excluded because surfclams for bait are 
harvested in contaminated areas outside of the survey region.  
 
 

 
 
Appendix A1, Figure 1. Percentage of total surfclam landings that came from state waters, which 
are mostly New Jersey and New York with small amounts from New England.  
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Appendix A1, Figure 2. Map showing the sampling regions for the NJ state survey, and station 
locations 1988-2008. Within each region there are three along-shore depth strata one mile wide. 
Map courtesy of Jeff Normant, NJDEP.  
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Appendix A1, Figure 3. Map showing New York state sampling regions from west to east: RJ, 
JF and FM, which each have 3 depth strata, and MM which has one depth stratum. Map courtesy 
of Wade Carden, NYSDEC.  
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Appendix A1, Figure 4. The inshore commercial clam dredge used for the New York surveys. 
Photo courtesy of Jeff Normant, NJDEP; William Burton, Versar, Inc.; and Beth Brandreth, 
USACE.  
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Appendix A1, Figure 5. Survey-based population estimates for surfclams in New Jersey and 
New York from years when there was random stratified sampling. 
 
 

 
 
Appendix A1, Figure 6. Landings, harvest limit and population of surfclams in New York state 
waters. Landings and harvest limit are scaled to the left axis and population is scaled to the right 
axis. The harvest limit was raised to 890,000 bushels for one year in 2004. 
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Appendix A1, Figure State - 7. Bushels of surfclams harvested from New Jersey “approved” 
(surfclams for human consumption) and “prohibited” (surfclams for bait only) waters. 
 

 
 
Appendix A1, Figure 8. Standing stock in industry bushels from New Jersey state waters. Clams 
from approved waters can be sold for human consumption, while clams from prohibited waters 
are sold for bait only. 

0

200

400

600

800

1000

1200

1400

1600

1800

2007 2008 2009 2010 2011 2012 2013

st
an
d
in
g 
st
o
ck
 in

 b
u
sh
e
ls

year

New Jersey surfclam standing stock 

approved waters prohibited waters



 

206 
56th SAW Assessment Report  A. Atlantic Surfclam-Appendix A1 

             
Appendix A1, Figure 9. Length frequencies from the 2008-2012 annual New Jersey state 
surfclam surveys. Figure courtesy of Jeff Normant, NJDEP. 
 
 

 
Appendix A1, Figure 10. Length frequencies from the 2002, 2005, 2006, 2008 and 2012 New 
York state surfclam surveys.



 

207 
56th SAW Assessment Report  A. Atlantic Surfclam-Appendix A1 

 

 

 
 
Appendix A1, Figure 11. A rough comparison of surfclam density estimates (total estimated 
number of clams over the area surveyed in square feet) from the NJ State survey and the NJ 
region of the NEFSC survey in federal waters (top) and the NY state survey and LI region of the 
NEFSC survey in federal waters (top). All sizes of clams were included, and an adjustment was 
made to the NEFSC data to account for a dredge efficiency of 0.256. No adjustments were made 
to the NY or NJ data. The comparisons are approximate due to differences in dredge design, 
capture efficiency and size selectivity 
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Appendix A1, Figure 12. New York State Surfclam Survey - Estimated density of clams, in individuals per m2, per stratum by survey 
year. Strata cover the waters off the south side of Long Island. Plots are laid out in order with the left plots representing the 
westernmost strata, which are broken down into inner, middle and outer miles (numbers 1-3), covering the three-mile limit of State 
waters. The easternmost stratum has only the inner substratum. RJ =  Rockaway Inlet to Jones Inlet, JF = Jones Inlet to Fire Island 
Inlet, FM = Fire Island Inlet to Moriches Inlet, MM = Moriches Inlet to Montauk Point. 
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Appendix A1, Figure 13. New Jersey State survey - estimated number of clams per stratum by 
survey year. Plots are laid out in order with the top plot representing the northernmost stratum. 
Strata are further broken down into inner, middle and outer miles, covering the three-mile limit 
of State waters. 
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Appendix A1, Figure 14. As part of the annual survey, the state of New Jersey takes sediment 
grab samples, which contain recently settled juvenile surfclams. The clams are generally less 
than 10mm. About 300 grabs are taken every survey, and the area sampled is 1/10 of a square 
meter. 
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Appendix A1, Figure 15. Age compositions from the 2002, 2005, 2006 and 2008 New York 
State surfclam surveys, in bushels at age. 
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Appendix A1, Figure 16. Surfclam length at age from the 2002, 2005, 2006 and 2008 New York 
State surveys.  
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Appendix A1, Figure 17. Exploitation rates (expressed as landings as a percentage of estimated 
biomass) and population biomass for New Jersey (top) and New York state surfclams. 
 

0

1

2

3

4

5

6

7

0

5

10

15

20

25

30

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

E
x

p
lo

it
a

ti
o

n
 ra

te
 in

 p
e

rc
e

n
t

p
o

p
u

la
ti

o
n

 (
m

ill
io

n
s 

o
f b

u
s

h
e

ls
)

year

New Jersey population in millions of bu exploitation rate

0

1

2

3

4

5

6

7

0

5

10

15

20

25

30

2000 2002 2004 2006 2008 2010 2012 2014

e
x

p
lo

it
a

ti
o

n
 ra

te
 in

 p
e

rc
e

n
t

p
o

p
u

la
ti

o
n

 (
m

ill
io

n
s 

o
f b

u
s

h
e

ls
)

year

New York population in millions of bu exploitation rate



 

214 
56th SAW Assessment Report  A. Atlantic Surfclam-Appendix A2 

Appendix A2: Maps of commercial harvest through time 
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Appendix A2, Figure 1. Landings, time fished and LPUE by ten-minute square from 1979 – 
2011 (Following pages). 
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Appendix A3: Maps of NEFSC clam surveys 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Following pages) Maps of NEFSC clam survey surfclam catches since 1980. Symbols represent number per tow of 
clams of all sizes. The maximum number of clams caught in a tow is the highest number in the legend. 
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Appendix A4: KLAMZ methods 
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KLAMZ Assessment Model – Technical Documentation 

 
The KLAMZ assessment model is based on the Deriso-Schnute delay-difference equation (Deriso 1980; 

Schnute 1985; Quinn and Deriso 1999).  The delay-difference equation is a relatively simple and implicitly age 
structured approach to counting fish in either numerical or biomass units.  It gives the same results as explicitly age-
structured models (e.g. Leslie matrix model) if fishery selectivity is “knife-edged”, if somatic growth follows the 
von Bertalanffy equation, and if natural mortality is the same for all age groups in each year.  Knife-edge selectivity 
means that all individuals alive in the model during the same year experience the same fishing mortality rate.5  
Natural and fishing mortality rates, growth parameters and recruitment may change from year to year, but delay-
difference calculations assume that all individuals share the same mortality and growth parameters within each year.  
The KLAMZ model includes simple numerical models (e.g. Conser 1995) as special cases because growth can be 
turned off so that all calculations are in numerical units (see below). 

 
As in many other simple models, the delay difference equation explicitly distinguishes between two age 

groups.  In KLAMZ, the two age groups are called “new“ recruits (Rt in biomass or numerical units at the beginning 
of year t) and “old” recruits (St) that together comprise the whole stock (Bt).  New recruits are individuals that 
recruited at the beginning of the current year (at nominal age k).6  Old recruits are all older individuals in the stock 
(nominal ages k+1 and older, survivors from the previous year).  As described above, KLAMZ assumes that new 
and old recruits are fully vulnerable to the fishery.  The most important differences between the delay-difference and 
other simple models (e.g. Prager 1994; Conser 1995; Jacobson et al. 1994) are that von Bertalanffy growth is used to 
calculate biomass dynamics and that the delay-difference model captures transient age structure effects due to 
variation in recruitment, growth and mortality exactly.  Transient effects on population dynamics are captured 
exactly because, as described above, the delay-difference equation is algebraically equivalent to an explicitly age-
structured model with von Bertalanffy growth.   

 
The KLAMZ model incorporates a few extensions to Schnute’s (1985) revision of Deriso’s (1980) original 

delay difference model.  Most of the extensions facilitate tuning to a wider variety of data that anticipated in Schnute 
(1985).  The KLAMZ model is programmed in both Excel and in C++ using AD Model Builder7 libraries.   The AD 
Model Builder version is faster, more reliable and probably better for producing “official” stock assessment results.  
The Excel version is slower and implements fewer features, but the Excel version remains useful in developing 
prototype assessment models, teaching and for checking calculations. 

 
The most significant disadvantage in using the KLAMZ model and other delay-difference approaches, 

beyond the assumption of knife-edge selectivity, is that age and length composition data are not used in tuning.  
However, one can argue that age composition data are used indirectly to the extent they are used to estimate growth 
parameters or if survey survival ratios (e.g. based on the Heinke method) are used in tuning (see below). 
 

                                                           
5 In applications, assumptions about knife-edge selectivity can be relaxed by assuming the model tracks “fishable”, 
rather that total, biomass (NEFSC 2000a; 2000b).  An analogous approach assigns pseudo-ages based on recruitment 
to the fishery so that new recruits in the model are all pseudo-age k.  The synthetic cohort of fish pseudo-age k may 
consist of more than one biological cohort.  The first pseudo-age (k) can be the predicted age at first, 50% or full 
recruitment based a von Bertalanffy curve and size composition data (Butler et al. 2002).  The “incomplete 
recruitment” approach (Deriso 1980) calculates recruitment to the model in each year Rt as the weighted sum of 
contributions from two or more biological cohorts (year-classes) from spawning during successive years (i.e. 





k

a
atat rR

1

where k is the age at full recruitment to the fishery, ra is the contribution of fish age k-a to the 

fishable stock, and at  is the number or biomass of fish age k-a during year t).  

6 In some applications, and more generally, new recruits might be defined as individuals recruiting at the beginning 
or at any time during the current time step (e.g. NEFSC 1996). 6  
Otter Research Ltd., Box 2040, Sydney, BC, Canada V8L 3S3 (otter@otter-rsch.com). 
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Population dynamics 

 
The assumed birth date and first day of the year are assumed the same in derivation of the delay-difference 

equation.  It is therefore natural (but not strictly necessary) to tabulate catch and other data using annual accounting 
periods that start on the assumed biological birthday of cohorts. 
 
Biomass dynamics    
 

As implemented in the KLAMZ model, Schnute’s (1985) delay-difference equation is: 

ttt1t1-t1-tttt1t R J   - R B    - B  )  (1  B     

where Bt is total biomass of individuals at the beginning of year t;  is Ford’s growth coefficient (see below); 
t=exp(-Zt)=exp[-(Ft+Mt)] is the fraction of the stock that survived in year t, Zt, Ft, and Mt are instantaneous rates 
for total, fishing and natural mortality; and Rt is the biomass of new recruits (at age k) at the beginning of the year.  
The natural mortality rate Mt may vary over time.  Instantaneous mortality rates in KLAMZ model calculations are 
biomass-weighted averages if von Bertalanffy growth is turned on in the model.  However, biomass-weighted 
mortality estimates in KLAMZ are the same as rates for numerical estimates under the assumption of knife-edge 
selectivity because all individuals are fully recruited.  The growth parameter Jt = wt-1,k-1 / wt,k is the ratio of mean 
weight one year before recruitment (age k-1 in year t-1) and mean weight at recruitment (age k in year t).  
 

It is not necessary to specify body weights at and prior to recruitment in the KLAMZ model (parameters vt-1 
and Vt in Schnute 1985) because the ratio Jt and recruitment biomass contain the same information.  Schnute’s 
(1985) original delay difference equation is: 

t1-k1,-tt1tk1,t1-t1-tttt1t N  - N B   - B  )  (1  B ww     

To derive the equation used in KLAMZ, substitute recruitment biomass Rt+1 for the product wt+1,k Nt+1,k and adjusted 
recruitment biomass Jt Rt = (wt-1,k-1/wt,k) wt,k Nt,k =  
wt-1,k-1 Nt in the last term on the right hand side.  The advantage in using the alternate parameterization for biomass 
dynamic calculations in KLAMZ is that recruitment is estimated directly in units of biomass and the number of 
growth parameters is reduced.  The disadvantage is that numbers of recruits are not estimated directly by the model.  
When required, numerical recruitments must be calculated externally as the ratio of estimated recruitment biomass 
and the average body weight for new recruits. 
 
Numerical population dynamics 
 Growth can be turned on off so that abundance, rather than biomass, is tracked in the KLAMZ model.  Set Jt=1 
and =0 in the delay difference equation, and use Nt (for numbers) in place of Bt to get: 

1ttt1t R N   N    

Mathematically, the assumption Jt=1 means that no growth occurs  the assumption =0 means that the von 
Bertalanffy K parameter is infinitely large (Schnute 1985).  All tuning and population dynamics calculations in 
KLAMZ for biomass dynamics are also valid for numerical dynamics.   
 
Growth 
 

As described in Schnute (1985), biomass calculations in the KLAMZ model are based on 
Schnute and Fournier’s (1980) re-parameterization of the von Bertalanffy growth model:   

)-(1 / )  (1 ) w- (w  w w k-a1
1-kk1-ka    

where wk=V and wk-1=v.  Schnute and Fournier’s (1980) growth model is the same as the traditional von Bertalanffy 
growth model {Wa= Wmax [1 - exp(-K(a-tzero)] where Wmax, K and tzero are parameters}.  The two growth models are 
the same because Wmax = (wk -  wk-1)/(1-), K = -ln() and tzero = ln[(wk - wk-1)/(wk -  wk-1)] / ln().   

 
In the KLAMZ model, the growth parameters Jt can vary with time but  is constant.   Use of time-variable 

Jt values with  is constant is the same as assuming that the von Bertalanffy parameters Wmax and tzero change over 
time.  Many growth patterns can be mimicked by changing Wmax and tzero (Overholtz et al., 2003).  K is a parameter 
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in the C++ version and, in principal, estimable.  However, in most cases it is necessary to use external estimates of 
growth parameters as constants in KLAMZ. 
 
Instantaneous growth rates 

             Instantaneous growth rate (IGR) calculations in the KLAMZ model are an extension to the 
original Deriso-Schnute delay difference model.  IGRs are used extensively in KLAMZ for 
calculating catch biomass and projecting stock biomass forward to the time at which surveys 
occur.  The IGR for new recruits depends only on growth parameters: 

 )1ln(ln
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IGR for old recruits is a biomass-weighted average that depends on the current age structure and growth 
parameters.  It can be calculated easily by projecting biomass of old recruits St=Bt-Rt (escapement) forward one year 
with no mortality: 

    11
* 1  tttt BSS   

where the asterisk (*) means just prior to the start of the subsequent year t+1.  By definition, the IGR for old recruits 

in year t is  tt
Old
t SSG *ln .  Dividing by St gives:  
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IGR for the entire stock is the biomass weighted average of the IGR values for new and 
old recruits: 
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All IGR values are zero if growth is turned off. 
 
Recruitment 
 

 In the Excel version of the KLAMZ model, annual recruitments are calculated teRt
 where t is a log 

transformed annual recruitment parameter, which is estimated in the model.   In the C++ version, recruitments are 
calculated based on two log geometric mean recruitment parameters (, t), and a set of annual log scale deviation 
parameters (t): 

  ttt    

The parameter t is an offset for a step function that may be zero for all years or zero for years up to a user-specified 
“change year” and any value (usually estimated) afterward.  The user must specify the change year, which cannot be 
estimated.  The change year might be chosen based on auxiliary information outside the model, preliminary model 
fits or by carrying out a set of runs using sequential change year values and to choosing the change year that 
provides the best fit to the data. 
 
The deviations t are constrained to average zero.8    With the constraint, for example, estimation of  and the set of 
t  values (1+ n years parameters) is equivalent to estimation of the smaller set (n years) of t values. 
 
Recruitment as a rate 
Recruitment is assumed in the KLAMZ model to occur at the beginning of the year.   However, it is often useful to 
calculate recruitment biomass as an instantaneous rate for comparison to instantaneous rates for natural mortality, 
fishing mortality and growth.  If recruitment were a continuous process, then the instantaneous rate for year t could 
                                                           

8 The constraint is implemented by adding 2L (where   is the average deviation) to the objective function, 
generally with a high weighting factor ( = 1000) so that the constraint is binding. 
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be calculated: 
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The recruitment rate can not be calculated for the last year in the model because St is not available.   The KLAMZ 
model calculates recruitment rates for all other years automatically. 
 

Natural mortality 
 
 Natural mortality rates (Mt) are assumed constant in the Excel version of the KLAMZ model.  In the C++ 
version, natural mortality rates may be estimated as a constant value or as a set of values that vary with time.  In the 
model: 

tmeM t
  

where m=exp() is the geometric mean natural mortality rate,   is a model parameter that may be estimated (in 
principal but not in practical terms), and t is the log scale year-specific deviation.  Deviations may be zero (turned 
off) so that Mt is constant, may vary in a random fashion due to autocorrelated or independent process errors, or may 
based on a covariate.9  Model scenarios with zero recruitment may be initializing the parameter  to a small value 
(e.g. 10-16 ) and not estimating it.   
 

Random natural mortality process errors are effects due to predation, disease, parasitism, ocean conditions 
or other factors that may vary over time but are not included in the model.  Calculations are basically the same as for 
survey process errors (see below). 

 
Natural mortality rate covariate calculations are similar to survey covariate calculations (see below) except 

that the user should standardize covariates to average zero over the time period included in the model: 

KKtt   

where t is the standardized covariate, Kt is the original value, and K is the mean of the original covariate for the 
years in the model.  Standardization to mean zero is important because otherwise m is not the geometric mean 
natural mortality rate (the convention is important in some calculations, see text).  
 

Log scale deviations that represent variability around the geometric mean are calculated: 

 t

n

j
jt p  




1

 

where n is the number of covariates and pj is the parameter for covariate j.  These conventions mean that the units 
for the covariate parameter pj are 1/units of the original covariate, the parameter pj measures the log scale effect of 
changing the covariate by one unit, and the parameter m is the log scale geometric mean. 
 
Fishing mortality and catch 

 
 Fishing mortality rates (Ft) are calculated so that predicted and observed catch data (landings plus estimated 
discards in units of weight) “agree” to the extent specified by the user.  It is not necessary, however, to assume that 
catches are measured accurately (see “Observed and predicted catch”).   
 

Fishing mortality rate calculations in Schnute (1985) are exact but relating fishing mortality to catch in 
weight is complicated by continuous somatic growth throughout the year as fishing occurs.  The KLAMZ model 
uses a generalized catch equation that incorporates continuous growth through the fishing season.  By the definition 
of instantaneous rates, the catch equation expresses catch as the product: 

                                                           
9 Another approach to using time dependent natural mortality rates is to treat estimates of predator consumption as 
discarded catch (see “Predator consumption as discard data”).  In addition, estimates of predator abundance can be 
used in fishing effort calculations (see “Predator data as fishing effort”).  
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ttt BFC ˆ  

where tĈ is predicted catch weight (landings plus discard) and tB is average biomass.  

Following Chapman (1971) and Zhang and Sullivan (1988), let Xt=Gt-Ft-Mt be the net instantaneous rate of 

change for biomass.10  If the rates for growth and mortality are equal, then Xt=0, tt BB  and ttt BFC  .  If the 

growth rate Gt exceeds the combined rates of natural and fishing mortality (Ft + Mt), then Xt > 0.  If mortality 
exceeds growth, then Xt < 0.  In either case, with Xt 0, average biomass is computed:  

 
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t
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t X
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t
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1
 

 

When Xt 0, the expression for tB is an approximation because Gt approximates the rate of change in 

mean body weight due to von Bertalanffy growth.  However, the approximation is reasonably accurate and 
preferable to calculating catch biomass in the delay-difference model with the traditional catch equation that ignores 
growth during the fishing season.11 Average biomass can be calculated for new recruits, old recruits or for the 

whole stock by using either New
tG , Old

tG or Gt. 

 
In the KLAMZ model, the modified catch equation may be solved analytically for Ft given Ct, Bt, Gt and Mt 

(see the “Calculating Ft” section below).  Alternatively, fishing mortality rates can be calculated using a log 
geometric mean parameter () and a set of annual log scale deviation parameters (t): 

  teFt
  

where the deviations t are constrained to average zero.  When the catch equation is solved analytically, catches 
must be assumed known without error but the analytical option is useful when catch is zero or very near zero, or the 
range of fishing mortality rates is so large (e.g. minimum F=0.000001 to maximum F=3) that numerical problems 
occur with the alternative approach.  The analytical approach is also useful if the user wants to reduce the number of 
parameters estimated by nonlinear optimization.  In any case, the two methods should give the same results for 
catches known without error. 
 
 
Surplus production 

 
Annual surplus production is calculated “exactly” by projecting biomass at the beginning of each year 

forward with no fishing mortality: 

 tR 1-t1-t
-M

2-t
-2M

t
-M*

t R J e  -Be  - B e )  (1  B   

By definition, surplus production Pt=B*
t-Bt (Jacobson et al. 2002).   

 
Per recruit modeling 
 
 Per recruit model calculations in the Excel version of the KLAMZ simulate the life of a hypothetical cohort of 

arbitrary size (e.g. R=1000) starting at age k with constant Mt, F (survival) and growth (  and average J ( J ) ) in a 

population initially at zero biomass.  In the first year: 

R  B1   

In the second year: 

  112 R J   - B  )  (1  B   

In the third and subsequent years: 

                                                           
10 By convention, the instantaneous rates Gt, Ft and Mt are always expressed as numbers   0.  

11 The traditional catch equation 
tt

Z
tt ZBeFC t )1(  where Zt=Ft+Mt underestimates catch biomass for a 

given level of fishing mortality Ft and overestimates Ft for a given level of catch biomass.  The errors can be 
substantial for fast growing fish, particularly if recent recruitments were strong.  
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1-t
2

t1 B   - B  )  (1  B t  

This iterative calculation is carried out until the sum of lifetime cohort biomass from one iteration to the next 
changes by less than a small amount (0.0001).  Total lifetime biomass, spawning biomass and yield in weight are 
calculated by summing biomass, spawning biomass and yield over the lifetime of the cohort.  Lifetime biomass, 
spawning biomass and yield per recruit are calculated by dividing totals by initial recruitment (R). 
 
Status determination variables 
 
The user may specify a range of years (e.g. the last three years) to use in calculating recent average fishing mortality 

centFRe and biomass centBRe levels.  These status determination variables are used in calculation of status ratios such 

as MSYcent FF /Re  and centBRe /BMSY. 

 
 
Goodness of Fit and Parameter Estimation 
 

            Parameters estimated in the KLAMZ model are chosen to minimize an objective function based 
on a sum of weighted negative log likelihood (NLL) components: 
 

 v

N

v
vL






1

  

 
where NΞ is the number of NLL components (Lv) and the v are emphasis factors used as weights.   The objective 
function   may be viewed as a NLL or a  negative log posterior (NLP) distribution, depending on the nature of the 
individual Lv components and modeling approach.  Except during sensitivity analyses, weighting factors for 
objective function components (v) are usually set to one.  An arbitrarily large weighting factor (e.g. v =1000) is 
used for “hard” constraints that must be satisfied in the model.  Arbitrarily small weighting factors (e.g. v =0.0001) 
can be used for “soft” model-based constraints.  For example, an internally estimated spawner-recruit curve or 
surplus production curve might be estimated with a small weighting factor to summarize stock-recruit or surplus 
production results with minimal influence on biomass, fishing mortality and other estimates from the model.  Use of 
a small weighting factor for an internally estimated surplus production or stock-recruit curve is equivalent to fitting a 
curve to model estimates of biomass and recruitment or surplus production in the output file, after the model is fit 
(Jacobson et al. 2002). 
 
Likelihood component weights vs. observation-specific weights 
 Likelihood component weights (v) apply to entire NLL components.  Entire components are often computed 
as the sum of a number of individual NLL terms.  The NLL for an entire survey, for example, is composed of NLL 
terms for each of the annual survey observations.  In KLAMZ, observation-specific (for data) or instance-specific 
(for constraints or prior information) weights (usually wj for observation or instance j) can be specified as well.  
Observation-specific weights for a survey, for example, might be use to increase or decrease the importance of one 
or more observations in calculating goodness of fit. 
  
NLL kernels 
 
 NLL components in KLAMZ are generally programmed as “concentrated likelihoods”  to avoid calculation of 
values that do not affect derivatives of the objective function.12  For x~N(,2), the complete NLL for one 
observation is: 

                                                           
12 Unfortunately, concentrated likelihood calculations cannot be used with MCMC and other Bayesian approaches 
to characterizing posterior distributions.  Therefore, in the near future, concentrated NLL calculations will be 
replaced by calculations for the entire NLL.  At present, MCMC calculations in KLAMZ are not useful.   
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The constant  2ln  can always be omitted because it does not affect derivatives.  If the standard deviation is 

known or assumed known, then ln() can be omitted as well because it is a constant that does not affect derivatives.  
In such cases, the concentrated negative log likelihood is:   
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If there are N observations with possible different variances (known or assumed known) and possibly different 
expected values: 
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             If the standard deviation for a normally distributed quantity is not known and is (in effect) 

estimated by the model, then one of two equivalent calculations is used.  Both approaches 
assume that all observations have the same variance and standard deviation.  The first approach 
is used when all observations have the same weight in the likelihood: 
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where N is the number of observations.  The second approach is equivalent but used when the weights for each 
observation (wi) may differ:  
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In the latter case, the maximum likelihood estimator: 
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 (where x̂ is the average or predicted value from the model) is used for  .  The maximum likelihood estimator is 
biased by N/(N-df) where df is degrees of freedom for the model.  The bias may be significant for small sample sizes 
but df is usually unknown. 
 
Landings, discards, catch  
 

Discards are from external estimates (dt) supplied by the user. If dt   0, then the data are used as the ratio 
of discard to landed catch so that: 

ttt LD   

where t =Dt/Lt is the discard ratio.  If dt < 0 then the data are treated as discard in units of weight: 

 .tt dabsD   

In either case, total catch is the sum of discards and landed catch (Ct = Lt + Dt).  It is possible to use discards in 
weight dt < 0 for some years and discard as proportions dt > 0 for other years in the same model run.  If catches are 

estimated (see below) so that the estimated catch tĈ  does not necessarily equal observed landings plus discard, then 

estimated landings are computed: 
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and estimated discards are:  

.ˆˆ
ttt LD   

 
Calculating Ft  

 
As described above, fishing mortality rates may be estimated based on the parameters  and t  to satisfy a 

NLL for observed and predicted catches: 
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where the standard error tcatcht CCV ˆ with CVcatch and weights are wt supplied by the user.  The weights can be 

used, for example, if catch data in some years are less precise than in others.  Using observation specific weights, 
any or every catch in the time series can potentially be estimated.   
 

The other approach to calculating Ft values is by solving the generalized catch equation (see above) 
iteratively.  Subtracting predicted catch from the generalized catch equation gives:  
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where Xt=Gt-Mt-Ft.  If Xt=0, then tt BB  and  Ft=Ct/Bt.   

 
If Xt0, then the Newton-Raphson algorithm is used to solve for Ft (Kennedy and Gentle 1980).  At each 

iteration of the algorithm, the current estimate i
tF is updated using: 

  
 
 it

i
ti

t
i

t Fg

Fg
FF

'
1 

  

where  i
tFg '  is the derivative i

tF .  Omitting subscripts, the derivative is: 
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where =G-Mt.  Iterations continue until  i
tFg  and     11   i

t
i

t FgFgabs  are both less than a small number 

(e.g.  0.00001).   
 

Initial values are important in algorithms that solve the catch equation numerically (Sims 1982).  If Mt+Ft > 

Gt so that  Xt < 0, then the initial value 0
tF is calculated according to Sims (1982).  If Mt+Ft < Gt so that Xt > 0, then 

initial values are calculated based on a generalized version of Pope’s cohort analysis (Zhang and Sullivan 1988): 
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F for landings versus F for discards 
 The total fishing mortality rate for each year can be partitioned into a component due to landed catch 

t
t

t
t

L F
C

D
F  , and a component due to discard t

t

t
t

D F
C

L
F  . 

Predator consumption as discard data 
 In modeling population dynamics of prey species, estimates of predator consumption can be treated like 
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discard in the KLAMZ model as a means for introducing time dependent natural mortality.  Consider a hypothetical 
example with consumption data (mt y-1) for three important predators.  If the aggregate consumption data are 
included in the model as “discards”, then the fishing mortality rate for discards dFt (see above) would be an estimate 
of the component of natural mortality due to the three predators.  In using this approach, the average level of natural 

mortality m would normally be reduced (e.g. so that old
d

new mFm  ) or estimated to account for the portion of 

natural mortality attributed to bycatch.  
 
 Surplus production calculations are harder to interpret if predator consumption is treated as discard data 
because surplus production calculations assume that Ft=0 (see above) and because surplus production is defined as 
the change in biomass from one year to the next in the absence of fishing (i.e. no landings or bycatch).  However, it 
may be useful to compare surplus production at a given level of biomass from runs with and without consumption 
data as a means of estimating maximum changes in potential fishery yield if the selected predators were eliminated 
(assuming no change in disease, growth rates, predation by other predators, etc.).  
 
Effort calculations 
 
 Fishing mortality rates can be tuned to fishing effort data for the “landed” catch (i.e. excluding discards).  
Years with non-zero fishing effort used in the model must also have landings greater than zero.  Assuming that 
effort data are lognormally distributed, the NLL for fishing effort is: 
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where wy is an observation-specific weight, neff is the number of active effort observations (i.e. with wy > 0),  Ey and

yE are observed and predicted fishing effort data, and the log scale variance  is a constant calculated from a user-

specified CV. 
 
  Predicted fishing effort data are calculated: 

 
 yy FE ˆ  

where  =eu,  =eb, and u and b are parameters estimated by the model.  If the parameter b is not estimated, then 

=1 so that the relationship between fishing effort and fishing mortality is linear.  If the parameter b is estimated, 
then 1 and the relationship is a power function.  
 
Predator data as fishing effort 
As described under “Predator consumption as discard data”, predator consumption data can be treated as discard.  If 
predator abundance data are available as well, and assuming that mortality due predators is a linear function of the 
predator-prey ratio, then both types of data may be used together to estimate natural mortality.  The trick is to: 1) 
enter the predator abundance data as fishing effort; 2) enter the actual fishery landings as “discard”; 3) enter predator 
consumption estimates of the prey species as “landings” so that the fishing effort data refer to the predator 
consumption data; 4) use an option in the model to calculate the predator-prey ratio for use in place of the original 
predator abundance “fishing effort” data; and 5) tune fishing mortality rates for landings (a.k.a. predator 
consumption) to fishing effort (a.k.a. predator-prey ratio). 
 

Given the predator abundance data y , the model calculates the predator-prey ratio used in place of fishing 

effort data (Ey) as: 

  
y

y
y B

E


     

where By is the model’s current estimate of total (a.k.a “prey”) biomass.  Subsequent calculations with Ey and the 
model’s estimates of “fishing mortality” (Fy, really a measure of natural mortality) are exactly as described above 
for effort data.  In using this approach, it is probably advisable to reduce m (the estimate of average mortality in the 
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model) to account for the proportion of natural mortality due to predators included in the calculation.  Based on 
experience to date, natural mortality due to consumption by the suite of predators can be estimated but only if m is 
assumed known. 
 
Initial population age structure 
  

In the KLAMZ model, old and new recruit biomass during the first year (R1 and S1 =B1-R1) and biomass 
prior to the first year (B0) are estimated as log scale parameters.  Survival in the year prior to the first year (“year 0”) 

is 10
0

MFe  with F0 chosen to obtain catch C0 (specified as data) from the estimated biomass B0.  IGRs during 

year 0 and year 1 are assumed equal (G0=G1) in catch calculations. 
 
  Biomass in the second year of as series of delay-difference calculations depends on biomass (B0) and 

survival (0) in year 0: 

1112001112 R J   - R B    - B  )  (1  B    

There is, however, there is no direct linkage between B0 and escapement biomass (S1=B1-R1) at the beginning of the 
first year.  
 

The missing link between B0, S1 and B1 means that the parameter for B0 tends to be relatively free and 
unconstrained by the underlying population dynamics model.  In some cases, B0 can be estimated to give good fit to 
survey and other data, while implying unreasonable initial age composition and surplus production levels.  In other 
cases, B0 estimates can be unrealistically high or low implying, for example, unreasonably high or low recruitment 
in the first year of the model (R1). Problems arise because many different combinations of values for R1, S1 and B0 
give similar results in terms of goodness of fit.  This issue is common in stock assessment models that use forward 
simulation calculations because initial age composition is difficult to estimate.  It may be exacerbated in delay-
difference models because age composition data are not used.   

 
            The KLAMZ model uses two constraints to help estimate initial population biomass and initial 

age structure.13  The first constraint links IGRs for escapement (GOld) in the first years to a 
subsequent value.  The purpose of the constraint is to ensure consistency in average growth rates 
(and implicit age structure) during the first few years.  For example, if IGRs for the first nG years 
are constrained14, then the NLL for the penalty is: 
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where the standard deviation G is supplied by the user.  It is usually possible to use the standard deviation of Old
tQ

for later years from a preliminary run to estimate G for the first few years.  The constraint on initial IGRs should 
probably be “soft” and non-binding (1) because there is substantial natural variation in somatic growth rates due 
to variation in age composition. 
 

The second constraint links B0 to S1 and ensures conservation of mass in population dynamics between 
years 0 and 1.  In other words, the parameter for escapement biomass in year 1 is constrained to match an 
approximate projection of the biomass in year 0, accounting for growth, and natural and fishing mortality.  The 
constraint is intended to be binding and satisfied exactly (e.g.  =1000) because incompatible values of S1 and B0 
are biologically impossible.  In calculations:  

 101
01

MFGp eBS   

where pS1 is the projected escapement in year 1 and B0 is the model’s estimate of total biomass in year 0.  The 

instantaneous rates for growth and natural mortality from year 1 (G1 and M1) are used in place of G0 and M0 because 
the latter are unavailable.  The NLL for the constraint: 
                                                           
13 Quinn and Deriso (1999) describe another approach attributed to a manuscript by C. Walters. 
14 Normally, nG  2. 



 

267 
56th SAW Assessment Report  A. Atlantic Surfclam-Appendix A4 

   211

22

1

1ln SS
S

S
L p

p





















  

uses a log scale sum of squares and an arithmetic sum of squares.  The former is effective when S1 is small while the 
latter is effective when S1 is large.  Constants and details in calculation of NLL for the constraint are not important 
because the constraint is binding (e.g.  =1000).  
 
Equilibrium pristine biomass 
 
 It may be useful to constrain the biomass estimate for the first year in a model run towards an estimate of 
equilibrium pristine biomass if, for example, stock dynamics tend to be stable and catch data are available for the 
first years of the fishery, or as an alternative to the approach described above for initializing the age structure of the 

simulated population in the model.  Equilibrium pristine biomass 0

~
B  is calculated based on the model’s estimate of 

average recruitment and with no fishing mortality (calculations are similar to those described under “Per-recruit 
modeling” except that average recruitment is assumed in each year).15  The NLL term for the constraint is: 
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Pristine equilibrium biomass is used as a hard constraint with a high emphasis factor () so that the variance and 
constants normally used in NLL calculations are not important.  
 
Estimating natural mortality 
 
As described above, natural mortality calculations involve a parameter for the geometric mean value (m) and time 
dependent deviations (t, which may or may not be turned on). Constraints on natural mortality process errors and 
natural mortality covariates can be used to help estimate the time dependent deviations and overall trend. The 
geometric mean natural mortality rate is usually difficult to estimate and best treated as a known constant.  However, 
in the C++ version of the KLAMZ model, m=e (where  is an estimable parameter in the model) and estimates of m 
can be conditioned on the constraint: 
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where wTarget is a user supplied mean or target value and  is a log scale standard deviation.  The standard deviation 
is calculated from an arithmetic scale CV supplied by the user.  Upper and lower bounds for m may be specified as 
well. 
 
Goodness of fit for trend data 

 
            Assuming lognormal errors16, the NLL used to measure goodness-of-fit to “survey” data that 

measure trends in abundance or biomass (or survival, see below) is: 

                                                           
15 Future versions of the KLAMZ model will allow equilibrium initial biomass to be calculated based on other 
recruitment values and for a user-specified level of F (Butler et al. 2003). 
16 Abundance indices with statistical distributions other than log normal may be used as well, but are not currently 
programmed in the KLAMZ model.  For example, Butler et al. (2003) used abundance indices with binomial 
distributions in a delay-difference model for cowcod rockfish.  The next version of KLAMZ will accommodate 
presence-absence data with binomial distributions. 
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where Iv,t is an index datum from survey v, hats “^” denote model estimates, v,j is a log scale 
standard error (see below), and Nv is the number of observations.  There are two approaches to 
calculating standard errors for log normal abundance index data in KLAMZ and it is possible to 
use different approaches for different types of abundance index data in the same model (see 
below). 
 
Standard errors for goodness of fit 

            In the first approach, all observations for one type of abundance index share the same standard 
error, which is calculated based on overall goodness of fit.  This approach implicitly estimates 
the standard error based on goodness of fit, along with the rest of the parameters in the model 
(see “NLL kernels” above).   

 
           In the second approach, each observation has a potentially unique standard error that is calculated 

based on its CV.  The second approach calculates log scale standard errors from arithmetic CVs 
supplied as data by the user (Jacobson et al. 1994): 

   2
,, 1ln tvtv CV  

Arithmetic CV’s are usually available for abundance data.  It may be convenient to use CVv,t=1.31 to get v,t=1. 
 

There are advantages and disadvantages to both approaches.  CV’s carry information about the relative 
precision of abundance index observations.  However, CV’s usually overstate the precision of data as a measure of 
fish abundance17 and may be misleading in comparing the precision of one sort of data to another as a measure of 
trends in abundance (e.g. in contrasting standardized LPUE that measure fishing success, but not abundance,  
precisely with survey data that measure trends in fish abundance directly, but not precisely).  Standard errors 
estimated implicitly are often larger and more realistic, but assume that all observations in the same survey are 
equally reliable. 
 
Predicted values for abundance indices 

Predicted values for abundance indices are calculated: 

tvvtv AQI ,, 


 

where Qv is a survey scaling parameter (constant here but see below) that converts units of biomass to units of the 
abundance index.  Av,t is available biomass at the time of the survey.   
 

In the simplest case, available biomass is: 

  tv
Old
ttv

New
t X

tOldv
X

tNewvtv eSseRsA ,,

,,,
   

where sv,New and sv,Old are survey selectivity parameters for new recruits (Rt) and old recruits (St); 

tt
New
t

New
t MFGX  and tt

Old
t

Old
t MFGX  ; jv,t is the Julian date at the time of the survey, and 

v,t=jv,t/365 is the fraction of the year elapsed at the time of the survey.   
 

                                                           
17 The relationship between data and fish populations is affected by factors (process errors) that are not accounted 
for in CV calculations. 
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Survey selectivity parameter values (sv,New and sv,Old) are specified by the user and must be set between zero 
and one.  For example, a survey for new recruits would have sv,New=1 and sv,Old=0.  A survey that measured 
abundance of the entire stock would have sv,New=1 and sv,Old=1.   

 
Terms involving v,t are used to project beginning of year biomass forward to the time of the survey, 

making adjustments for mortality and somatic growth.18  As described below, available biomass Av,t is adjusted 
further for nonlinear surveys, surveys with covariates and surveys with time variable Qv,t.  

 
 
Scaling parameters (Q) for log normal abundance data 

             Scaling parameters for surveys with lognormal statistical errors were computed using the 
maximum likelihood estimator: 
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where Nv is the number of observations with individual weights greater than zero. The closed form maximum 
likelihood estimator gives the same answer as if scaling parameters are estimated as free parameters in the 
assessment model assuming lognormal survey measurement errors. 
 
 Survey covariates  
 Survey scaling parameters may vary over time based on covariates in the KLAMZ model.  The survey scaling 
parameter that measures the relationship between available biomass and survey data becomes time dependent: 

tvtvtv AQI ,,, 


 

and 
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with nv covariates for the survey and parameters r estimated in the model.  Covariate effects and available biomass 
are multiplied to compute an adjusted available biomass: 


 

vn

r
rtrd

tvtv eAA 1
,

,,



 

The adjusted available biomass A’
v,t is used instead of the original value Av,t in the closed form maximum likelihood 

estimator described above. 
 

Covariates might include, for example, a dummy variable that represents changes in survey bottom trawl 
doors or a continuous variable like average temperature data if environmental factors affect distribution and 
catchability of fish schools.  Dummy variables are usually either 0 or 1, depending on whether the effect is present 
in a particular year.  With dummy variables, Qv is the value of the survey scaling parameter with no intervention 
(dr,t=0).   

 
For ease in interpretation of parameter estimates for continuous covariates (e.g. temperature data), it is 

useful to center covariate data around the mean: 

  rtrtr ddd  ,,  

                                                           
18 It may be important to project biomass forward if an absolute estimate of biomass is available (e.g. from a 
hydroacoustic or daily egg production survey), if fishing mortality rates or high or if the timing of the survey varies 
considerably from year to year. 
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where d’
r,t is the original covariate.  When covariates are continuous and mean-centered, Qv is the value of the 

survey scaling parameter under average conditions (dr,t=0) and units for the covariate parameter are easy to interpret 
(for example, units for the parameter are 1/ oC if the covariate is mean centered temperature in oC).   
 

It is possible to use a survey covariate to adjust for differences in relative stock size from year to year due 
to changes in the timing of a survey.  However, this adjustment may be made more precisely by letting the model 
calculate v,t as described above, based on the actual timing data for the survey during each year.  
 
Nonlinear abundance indices 
 With nonlinear abundance indices, and following Methot (1990), the survey scaling parameter is a function of 
available biomass: 

   tvvtv AQQ ,,  

so that: 

    tvtvvtv AAQI ,,,




  

Substituting e=+1 gives the equivalent expression:  

  
e
tvvtv AQI ,, 


 

where  is a parameter estimated by the model and the survey scaling parameter is no longer time dependent.  In 
calculations with nonlinear abundance indices, the adjusted available biomass: 

  
e
tvtv AA ,,   

is computed first and used in the closed form maximum likelihood estimator described above to calculate the survey 
scaling parameter.  In cases where survey covariates are also applied to a nonlinear index, the adjustment for 
nonlinearity is carried out first. 
 
Survey Q process errors 
The C++ version of the KLAMZ model can be used to allow survey scaling parameters to change in a controlled 
fashion from year to year (NEFSC 2002): 

  tveQQ vtv
,

,
  

where the deviations tv ,  are constrained to average zero.  Variation in survey Q values is controlled by the NLL 

penalty: 
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where the log scale standard deviation v based on an arithmetic CV supplied by the user (e.g. see NEFSC 2002).  In 
practice, the user increases or decreases the amount of variability in Q by decreasing or increasing the assumed CV. 
 
Survival ratios as surveys 
 In the C++ version of KLAMZ, it is possible to use time series of survival data as “surveys”.   For example, an 
index of survival might be calculated using survey data and the Heinke method (Ricker 1975) as: 

  
tk

tk
t I

I
A

,

1,1   

so that the time series of At estimates are data that may potentially contain information about scale or trends in 
survival.  Predicted values for an a survival index are calculated: 

  tZ
t eA ˆ  

 
After predicted values are calculated, survival ratio data are treated in the same way as abundance data (in 

particular, measurement errors are assumed to be lognormal).  Selectivity parameters are ignored for survival data 
but all other features (e.g. covariates, nonlinear scaling relationships and constraints on Q) are available.  
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Recruitment models 
 
 Recruitment parameters in KLAMZ may be freely estimated or estimated around an internal recruitment 
model, possibly involving spawning biomass.  An internally estimated recruitment model can be used to reduce 
variability in recruitment estimates (often necessary if data are limited), to summarize stock-recruit relationships, or 
to make use of information about recruitment in similar stocks.  There are four types of internally estimated 
recruitment models in KLAMZ: 1) random (white noise) variation around a constant or time dependent mean 
modeled as a step function; 2) random walk (autocorrelated) variation around a constant or time dependent mean 
modeled as a step function; 3) random variation around a Beverton-Holt recruitment model; and 4) random variation 
around a Ricker recruitment model.  The user must specify a type of recruitment model but the model is not active 
unless the likelihood component for the recruitment model is turned on ( 0 ). 
 
 The first step in recruit modeling is to calculate the expected log recruitment level E[ln(Rt)] given the 
recruitment model.   For random variation around a constant mean, the expected log recruitment level is the log 
geometric mean recruitment: 

     NRRE
N

j
jt 




1

lnln    

For a random walk around a constant mean recruitment, the expected log recruitment level is the logarithm of 
recruitment during the previous year: 

    1lnln  tt RRE  

with no constraint on recruitment during the first year R1.  
  

For the Beverton-Holt recruitment model, the expected log recruitment level is: 

        t
b

t
a

t TeTeRE lnln   

where a=e and b=e, the parameters   and   are estimated in the model, Tt is spawning biomass, and  is the 

lag between spawning and recruitment.  Spawner-recruit parameters are estimated as log transformed values (e and 
e) to enhance model stability and ensure the correct sign of values used in calculations.  Spawning biomass is: 

  toldtnewt SmRmT   

where mnew and mold are maturity parameters for new and old recruits specified by the user.  For the Ricker 
recruitment model, the expected log recruitment level is: 

      


 tbSa
tt eSRE lnln  

where a=e and b=e, and the parameters   and   are estimated in the model.  

  
Given the expected log recruitment level, log scale residuals for the recruitment model are calculated: 

      ttt RERr lnln   

Assuming that residuals are log normal, the NLL for recruitment residuals is: 

   

















N

tt r

t
rt

first

rwL
2

5.0ln    

where t is an instance-specific weight usually set equal one.  The additional term in the NLL [ln(r)] is necessary 

because the variance 2
r is estimated internally, rather than specified by the user.  

   
The log scale variance for residuals is calculated using the maximum likelihood estimator: 
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where N is the number of residuals. For the recruitment model with constant variation around a mean value, tfirst=1.  
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For the random walk recruitment model, tfirst=2. For the Beverton-Holt and Ricker models, tfirst= 1  and the 

recruit model imposes no constraint on variability of recruitment during years 1 to   (see below).  The biased 
maximum likelihood estimate for 2 (with N in the divisor instead of the degrees of freedom) is used because actual 
degrees of freedom are unknown.  The variance term 2 is calculated explicitly  and stored because it is used below. 
 
Constraining the first few recruitments 
 It may be useful to constrain the first  years of recruitments when using either the Beverton-Holt or Ricker 
models if the unconstrained estimates for early years are erratic.  In the KLAMZ model, this constraint is calculated: 
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where tfirst is the first year for which expected recruitment E(Rl) can be calculated with the spawner-recruit model.  
In effect, recruitments that not included in spawner-recruit calculations are constrained towards the first spawner-
recruit prediction.  The standard deviation is the same as used in calculating the NLL for the recruitment model. 
 
Prior information about the absolute value abundance index scaling parameters (Q) 
 
 A constraint on the absolute value one or more scaling parameters (Qv) for abundance or survival indices may 
be useful if prior information is available (e.g. NEFSC 2000; NEFSC 2001; NEFSC 2002).  In the Excel version, it 
is easy to program these (and other) constraints in an ad-hoc fashion as they are needed.  In the AD Model Builder 
version, log normal and beta distributions are preprogrammed for use in specifying prior information about Qv for 
any abundance or survival index. 
   

The user must specify which surveys have prior distributions, minimum and maximum legal bounds (qmin 

and qmax), the arithmetic mean  q  and the arithmetic CV for the prior the distribution. Goodness of fit for Qv values 

outside the bounds (qmin, qmax) are calculated: 
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Goodness of fit for Qv values inside the legal bounds depend on whether the distribution of potential values is log 
normal or follows a beta distribution. 
 
Lognormal case 

Goodness of fit for lognormal Qv values within legal bounds is: 
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where the log scale standard deviation  CV 1ln  and  
2

ln
2  q  is the mean of the 

corresponding log normal distribution. 

 

Beta distribution case 

 The first step in calculation goodness of fit for Qv values with beta distributions is to calculate the mean and 
variance of the corresponding “standardized” beta distribution: 
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and 
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where the range of the standardized beta distribution is D=qmax-qmin.  Equating the mean and variance to the 
estimators for the mean and variance for the standardized beta distribution (the “method of moments”) gives the 
simultaneous equations: 
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where a and b are parameters of the standardized beta distribution.19  Solving the simultaneous equations gives: 
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Goodness of fit for beta Qv values within legal bounds is calculated with the NLL: 

       )'1ln(1'ln1 vv QbQaL   

where  minqQQQ vvv  is the standardized value of the survey scaling parameter Qv. 

 
Prior information about relative abundance index scaling parameters (Q-ratios) 
 
Constraints on “Q-ratios” can be used in fitting models if some information about the relative values of scaling 
parameters for two abundance indices is available.  For example, ASMFC (2001, p. 46-47) assumed that the relative 
scaling parameters for recruit and post-recruit lobsters taken in the same survey was either 0.5 or 1.  If both indices 
are from the same survey cruise (e.g. one index for new recruits and one index for old recruits in the same survey), 
then assumptions about q-ratios are analogous to assumptions about the average selectivity of the survey of the 
survey for new and old recruits.   

Q-ratio constraints tend to stabilize and have strong effects on model estimates.  ASMFC (2001, p. 274) 
found, for example, that goodness of fit to survey data, abundance and fishing mortality estimates for lobster 
changed dramatically over a range of assumed q-ratio values. 

To use q-ratio information in the KLAMZ model, the user must identify two surveys, a target value for the 
ratio of their Q values, and a CV for differences between the models estimated q-ratio and the target value.  For 
example, if the user believes that the scaling parameters for abundance index 1 and abundance index 3 is 0.5, with a 
CV=0.25 for uncertainty in the prior information then the model’s estimate of the q-ratio is =Q1/Q3.  The goodness 
of fit calculation is: 
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where  is the target value and the log scale standard deviation   is calculated from the arithmetic CV supplied by 
the user. 

Normally, a single q-ratio constraint would be used for the ratio of new and old recruits taken during the 

                                                           
19 If x has a standardized beta distribution with parameters a and b, then the probability of x is 
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same survey operation.  However, in KLAMZ any number of q-ratio constraints can be used simultaneously and the 
scaling parameters can be for any two indices in the model. 
 
Surplus production modeling 

 
Surplus production models can be fit internally to biomass and surplus production estimates in the model 

(Jacobson et al. 2002).  Models fit internally can be used to constrain estimates of biomass and recruitment, to 
summarize results in terms of surplus production, or as a source of information in tuning the model.  The NLL for 
goodness of fit assumes normally distributed process errors in the surplus production process: 

  
 












 


P
N

j

P
j

P
L

j

1

2~

5.0


 

where Np is the number of surplus production estimates (number of years less one), tP
~

 is a predicted value from the 

surplus production curve, Pt is the assessment model estimate, and the standard deviation   is supplied by the user 
based, for example, on preliminary variances for surplus production estimates.20  Either the symmetrical Schaefer 

(1957) or asymmetric Fox (1970) surplus production curve may be used to calculate tP
~

(Quinn and Deriso 1999).   

It may be important to use a surplus production curve that is compatible with recruitment patterns or 
assumptions about the underlying spawner-recruit relationship.  More research is required, but the asymmetric shape 
of the Fox surplus production curve appears reasonably compatible with the assumption that recruitment follows a 
Beverton-Holt spawner-recruit curve (Mohn and Black 1998).  In contrast, the symmetric Schaefer surplus 
production model appears reasonably compatible with the assumption that recruitment follows a Ricker spawner-
recruit curve. 

 
The Schaefer model has two log transformed parameters that are estimated in KLAMZ: 

  2~
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The Fox model also has two log transformed parameters: 
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See Quinn and Deriso (1999) for formulas used to calculate reference points (FMSY, BMSY, MSY, and K) for both 
surplus production models. 
 
Catch/biomass 

 

Forward simulation models like KLAMZ may tend to estimate absurdly high fishing 
mortality rates, particularly if data are limited.  The likelihood constraint used to prevent this 
potential problem is: 
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where: 

                                                           
20 Variances in NLL for surplus production-biomass models are a subject of ongoing research.  The advantage in 
assuming normal errors is that negative production values (which occur in many stocks, e.g. Jacobson et al. 2001) 
are accommodated.  In addition, production models can be fit easily by linear regression of Pt on Bt and Bt

2 with no 
intercept term.  However, variance of production estimate residuals increases with predicted surplus production.  
Therefore, the current approach to fitting production curves in KLAMZ is not completely satisfactory. 
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otherwise

FtifFt
dt 0


  

and  
with the threshold value  normally set by the user to about 0.95.  Values for  can be linked to maximum F values 
using the modified catch equation described above.  For example, to use a maximum fishing mortality rate of about 
F4 with M=0.2 and G=0.1 (maximum X=4+0.2-0.1=4.1), set F/X(1-e-X)=4 / 4.1 (1-e-4)=0.96. 
 
Uncertainty 
 

The AD Model Builder version of the KLAMZ model automatically calculates variances for parameters 

and quantities of interest (e.g. Rt, Ft, Bt, FMSY, BMSY, centFRe , centBRe , MSYcent FF /Re , MSYcent BB /Re , etc.) by the 

delta method using exact derivatives.  If the objective function is the log of a proper posterior distribution, then 
Markov Chain Monte Carlo (MCMC) techniques implemented in AD Model Builder libraries can be used estimate 
posterior distributions representing uncertainty in the same parameters and quantities.21   

 
Bootstrapping 

A FORTRAN program called BootADM can be used to bootstrap survey and survival index data in the 
KLAMZ model.  Based on output files from a “basecase” model run, BootADM extracts standardized residuals: 

  
jv

jv

jvI
jv

I

r
,

,

,,
ln











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

 

  

along with log scale standard deviations ( jv , , originally from survey CV’s or estimated from goodness of fit), and 

predicted values  jvI ,
ˆ  for all active abundance and survival observations.  The original standardized residuals are 

pooled and then resampled (with replacement) to form new sets of bootstrapped survey “data”: 

  jvr
jvjv

x eII .

,,
ˆ   

where r is a resampled residual.  Residuals for abundance and survival data are combined in bootstrap calculations.  
BootADM builds new KLAMZ data files and runs the KLAMZ model repetitively, collecting the bootstrapped 
parameter and other estimates at each iteration and writing them to a comma separated text file that can be processed 
in Excel to calculate bootstrap variances, confidence intervals, bias estimates, etc. for all parameters and quantities 
of interest (Efron 1982). 
 
Projections 
 
 Stochastic projections can be carried out using another FORTRAN program called SPROJDDF based on 
bootstrap output from BootADM.  Basically, bootstrap estimates of biomass, recruitment, spawning biomass, natural 
and fishing mortality during the terminal years are used with recruit model parameters from each bootstrap run to 
start and carryout projections.22  Given a user-specified level of catch or fishing mortality, the delay-difference 
equation is used to project stock status for a user-specified number of years.  Recruitment during each projected year 
is based on simulated spawning biomass, log normal random numbers, and spawner-recruit parameters (including 
the residual variance) estimated in the bootstrap run.  This approach is similar to carrying out projections based on 
parameters and state variables sampled from a posterior distribution for the basecase model fit.  It differs from most 
current approaches because the spawner-recruit parameters vary from projection to projection. 

                                                           
21 MCMC calculations are not available in the current version because objective function calculations use 
concentrated likelihood formulas.  However, the C++ version of KLAMZ is programmed in other respects to 
accommodate Bayesian estimation. 
22 At present, only Beverton-Holt recruitment calculations are available in SPROJDDF. 
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Appendix A5: KLAMZ model results 
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KLAMZ modeling 
 

The KLAMZ model for the entire surfclam stock during was the main modeling approach and primary 
basis for providing management advice in the last assessment (NEFSC 2010).  KLAMZ model results are provided 
here to build a bridge between the previous assessment and the current one.  KLAMZ results are also provided for 
the Northern and Southern areas.    

  
The KLAMZ assessment model is based on the Deriso-Schnute delay-difference equation (Deriso 1980; 

Schnute 1985; see complete technical documentation in Appendix A4).  The delay-difference equation is a relatively 
simple and implicitly age structured approach.  It gives the same results as explicitly age-structured models (e.g. 
Leslie matrix model) if fishery selectivity is “knife-edged”, if somatic growth follows the von Bertalanffy equation, 
and if natural mortality is the same for all age groups in each year.  Natural and fishing mortality rates, growth 
parameters and recruitment may change from year to year. 

 
There are two age or size groups in KLAMZ, “new” and “old” recruits that, together, comprise the whole 

stock.  New recruits are individuals that recruited at the beginning of the current year. Old recruits are all older 
individuals in the stock that recruited at the beginning of previous years.  

 
KLAMZ delay-difference models in this assessment were for surfclam biomass dynamics during 1981-

2011 and were generally similar to models used in the last surfclam assessment (NEFSC 2010).  The first year with 
survey data was 1982, however, the model has an estimable parameter for biomass in 1981 that defines the initial 
age structure.  Landings data are available for earlier years.  A number of changes, primarily to input data, for this 
assessment are described below under “Building a bridge”.  As in the last assessment, the natural mortality rate is 
M=0.15 y-1 (Appendix A4).   

 
Growth patterns were assumed to vary over time in all models because of recent slow growth in the DMV 

and NJ regions and because of changes in the distribution of the stock among regions which have different SLMWT 
and von Bertalanffy growth patterns.  In the KLAMZ model, the growth parameter Jt=wt-1k-1/wt,k (where wt,k is the 
mean body weight of a surfclam at the age of recruitment k in year t) may vary from year to year.  The growth 

parameter Jt represents the combined effects of the traditional von Bertalanffy growth parameters W and t0.  This 

approach was adequate for surfclams because much of the variation in growth appeared to be in maximum size W
(Table A16 Assessment report).   
 
Model configuration 

NEFSC clam survey data in the KLAMZ model were for new and old recruits.  Surveys were assumed to 
occur in the middle of the year because the NEFSC clam survey is carried out during late May-early July. As in the 
previous assessment, survey data used in the KLAMZ model were trends, after holes (unsampled survey strata in 
some years) were filled to the extent possible by borrowing data from the previous and successive surveys.  Some 
years were not used in whole stock or Northern area modeling because GBK was undersampled (Figure 1).  For 
example, GBK was not sampled at all in 2005.   

 
Survey trend data (stratified mean kg/tow) for surfclams 120-129 mm SL were assumed to track trends in 

biomass of new recruits.  Survey data for surfclams 130+ mm were assumed to track trends in the entire stock (old 
recruits).   

 
 
Following NEFSC (2009), swept area biomass estimates were included in the assessment model to measure 

scale, but not trends, in biomass.  Swept area biomass estimates were not efficiency corrected in this case because 
the prior on survey efficiency (see TOR 2) was intended to carry forward model uncertainty in scale.  Goodness of 
fit to the swept area biomass data was given nil weight in the overall objective function.  However, the likelihood of 
the estimated scaling parameter for swept area biomass was calculated based on a log normal prior distribution with 
mean 0.234 and arithmetic CV = 1.32 and the likelihood was added to the objective function used in fitting the 
model.  The CV was estimated by bootstrapping all available data on survey dredge efficiency (see TOR 2).  The 
CV is relatively broad and the prior information had a little effect in determining the overall scale of surfclam 
biomass and fishing mortality estimates.  Experience has shown that surfclam stock assessment data, aside from the 
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swept are area biomass estimates, are uninformative about the overall scale of biomass but do provide information 
about trends. Thus, the model tended to be uncertain regarding overall scale, for which there was limited data 
beyond the somewhat uninformative (high CV) prior distribution on survey dredge efficiency. 

 
 

 Following NEFSC (2003) surfclam recruits were estimated in the KLAMZ model as a random walk with steps 
constrained by a variance parameter. A smooth, random walk process is probably not ideal from a biological 
perspective because of the evidence in survey age composition data for strong year classes, but the approach was 
necessary because of the lack of annual recruitment data.  The random walk approach keeps the recruitment estimate 
in year t at the same level as in year t-1, unless there is a good reason, in terms of goodness of fit, to change it.  For 
surfclams in the KLAMZ model, the random walk approach helped avoid excessive variation in recruitment, 
enhanced model convergence, and ensured that some recruitment was estimated for each year. 
 
 In modeling surfclam population dynamics with random walk recruitment, it is important to tune the “random 

walk recruitment variance” 2
Rσ  which measures variability in the size of successive steps taken during the random 

walk (i.e. variance in [ln(R1/R2), ln(R2/R3), ln(R3/R4), etc.], where Rt is the recruitment estimate for year t).  As 2
Rσ  

approaches zero, recruitment estimates become smooth and tend towards a constant value with no changes from year 

to year.  As 2
Rσ  becomes large, estimated recruitments will change randomly and more widely from one year to 

next.   
 
 Following NEFSC (2007), initial KLAMZ model runs assumed high CV for steps in the random walk.  The 
assumed CV was gradually decreased in subsequent runs until the model was just able to fit the survey data without 
pattern in residuals and the model was able to fully converge (the Hessian matrix was invertible).  In addition, the 
CV for fit to the survey data (residual CV) was compared to CV for the actual survey data to determine if the model 
was fitting the survey data more closely than should be expected based on the precision of the survey data (implying 

that 2
Rσ  was too large).  Finally, it was determined that the fit to the “old” recruit time series should be better than 

the fit to the new recruit time series as the older recruits were based on a broader set of size classes and thus more 
data. The goal was basically to find the model that would adequately explain the survey data for surfclams, but not 
over fit the new recruit time series.   
 
 Recruitment estimates for surfclam from the KLAMZ model are complicated to interpret because of the 
constraints on variability and limited survey data.  Under these conditions, recruitment estimates for surfclam from 
the KLAMZ model should probably be regarded as “nuisance” parameters of less interest than biomass and fishing 
mortality estimates.  Recruitment estimates for surfclams at best reflect long term average trends.  However, 
recruitment estimates in the KLAMZ model are aliased with model misspecification, survey noise, survey year 
effects, natural mortality and variability in growth.  
 
Results-whole stock 
 The KLAMZ model fit survey biomass trend data reasonably well (Figure 2).  The model fit the whole stock 
survey data index better than the index for new recruits, as expected based on the CV for the two sets of survey data 
(CV for the recruit index are higher).   
 
 The survey scaling parameter for efficiency corrected swept area biomass was Q=0.16, which is close to the 
mode of the prior distribution of survey dredge efficiency. This indicates that the trend data, landings and model 
estimates did not provide sufficient information on scale to shift the model away from the relatively uninformative 
prior information about Q for swept area biomass estimates. 
 
 Model results (Figure 3 - 4) suggest that surplus production was high before the late 1990's and steadily 
declined afterwards to negative levels during 2001-2011 as somatic growth and recruitment rates declined.  Biomass 
increased until the late 1990s when surplus production was less than catch.   
 

Bootstrap and delta method CV for biomass, and recruitment estimates were < 25% indicating that 
estimates were reasonably precise (Table 1).  The bootstrap CV for fishing mortality were high because the 
denominator, the estimated fishing mortality values, were often close to zero.  Delta method CV are probably the 
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better measure of uncertainty in this case.    
 
Internal retrospective analysis 
 Retrospective analyses were carried out with the base case KLAMZ model for terminal years 2000-2011 
(Figure 5).  There was little evidence of a retrospective problem in either biomass or fishing mortality estimates.  
The model tends to fluctuate somewhat in scale because the scale of the model is uncertain, but the trend is 
consistent through time.  Changes in scale tended to occur when data from an additional NEFSC clam survey (as in 
the case of 2002, 2008 and 2011) was dropped. 
 
Historical retrospective analysis 
 Biomass and fishing mortality estimates from surfclam stock assessments carried out since 1998 were 
compared to determine the stability of stock estimates used to provide management advice (Figure 6).  The scale of 
the model fit is considerably higher than in past assessments.  This is primarily due to changes in the way survey 
efficiency was estimated and the increased variance in the prior distribution for survey Q.  The most important 
aspect of the historical retrospective analysis is the substantial differences between base case biomass and fishing 
mortality estimates and estimates from the previous assessment.  The factors responsible for these changes are 
explained below. 
 
Performance of historical projections 
 The current model differed from historical projections.  Comparisons in trend were used because the scale of 
the model in the last assessment was much lower (Figure 6).  In the last assessment the projected biomass in 2011 
was approximately 6% lower than biomass in 2008.  Using the current whole stock KLAMZ model, biomass in 
2011 was approximately 14% lower than biomass in 2008 (Table 2).  The discrepancy can be explained by 
differences in estimated trend between the models, caused by differences in the fit to the survey data (see below).      
 
 
Building a bridge 

 Differences between estimates in the base case model in this assessment and the last assessment due to 
modifications to data and modeling procedures.  These are discussed below, one step at a time (Figure 7).  The most 
important factors contributing to differences between the base case model biomass estimates in this assessment and 
estimates in the previous assessment are: additional variance in the prior distribution for survey Q (Step 3), and 
additional variance allowed in the fit to the recruit time series (Step 2, Step 13). 

 
Step 1 was to run the KLAMZ model using updated data from the last assessment to determine if any new 

bugs had crept into the model code.  The model was able to estimate parameters, but produced steep gradients and 

did not converge.  Step 2 was to allow more freedom in the variance of the random walk recruitment parameter, 2
Rσ

, which allowed a better fit to the survey data for both old and new recruits.  This step reduced the magnitude of the 
gradients, but still did not produce an invertible hessian matrix.  Step 3 was to incorporate the new prior distribution 
for survey Q, which increased the variance in the prior by an order of magnitude from the last assessment.  Step 4 
was to include the new selectivity estimates for the survey dredge. The fifth step was to incorporate new SLMWT 
relationships. Step 6 was to add the updated growth estimates.  The model converged for the first time after this step.  
The seventh step was to decouple the surveys (in previous estimates there was overlap in size classes between the 
old and new recruits).  The eighth step was to include discards in the fishery data being used (a correction to an 
oversight).  The ninth step was to remove data from 1983 from the whole stock model due to poor coverage on 
GBK.  Step 10 was to incorporate changes in sensor data criteria used to identify and discard “bad” survey tows for 
use in estimating efficiency corrected swept area biomass. The eleventh step was to fix a bug in the routine to 
borrow data from adjacent years to fill holes in the survey time series.  Step 12 was to fix a bug in the growth 

estimates added in step 6.  Finally step 13 was to adjust the 2
Rσ  parameter to minimize the overall Likelihood 

function.  Convergence was generally tenuous throughout this process. The model was sensitive to starting 
conditions and generally produced large gradients even when the hessian matrix was invertible. 
 
 
Results-Southern Area 
  
 The KLAMZ model for the southern area (SVA to SNE) incorporated all of the data available.  All survey 
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years were included for new (120 – 129 mm SL) and old (130+ mm SL) recruits.  Swept area biomass for all years 
in which dredge sensors were deployed (1997 and after; Figure 8) were included as well.  Catch data between 1982 
and 2011 were used.   
 
 Other model parameters were selected according to the methodology established in the whole stock model. 
Growth parameters and juvenile ratios (see above) were calculated for the appropriate subset of the data for the 

whole stock (animals from SVA to SNE). The 2
Rσ  parameter (see above) was chosen to minimize a concentrated 

Likelihood function that ignored the recruitment model component.  The recruitment model component is always 

minimized by a 2
Rσ equal to zero because it prefers a recruitment model with fewer parameters (see Appendix A4).  

  

 Changing the 2
Rσ  parameter had a substantial affect on the overall model (Figure 9).  The trend of the model 

fit was relatively unaffected, but the scale changed by as much as a factor of three depending on the value of 2
Rσ

chosen. 
 
   The model fit the survey data reasonably well (Figure 10).  Trends in the overall fit were similar to the fit for 
the whole stock, indicating that the population biomass peaked in the late 1990's.  The southern area, however, 
indicates a steeper decline since then (Figure 11).   
 
 Surplus production (Figure 12) was positive until the mid 1990's and has been negative since then, until 2011.  
The upward trend in surplus production over the last six years has been driven by strong recruitment.   
 
 The scale parameter for the KLAMZ model, survey Q, was 0.55.  This value is considerably higher than the 
survey Q estimated for the whole stock (0.16).  The discrepancy is a result of uncertainty in our extra-model 
estimates of survey dredge efficiency (see above) and is reflected in the prior distribution which has a CV of 134%.  
The KLAMZ model is therefore given very little information about scale and that uncertainty is evident in the 
trouble KLAMZ has in establishing a consistent scale.   
 
 Bootstrap runs (n=500) for the southern area KLAMZ model runs were fairly consistent though there were a 
few extreme outliers (Figure 13).  This is reflected in the bootstrap CV which were generally high (Table 3) and 
driven by outliers which tended to be unconverged cases (~3%).  Delta method CV were generally below 20%.    
  
 
Internal Retrospective 
  
 Retrospective analysis indicates a shift in scale, but not trend, as survey years are removed from the model 
(Figure 14). The model tends to fluctuate somewhat in scale because the scale of the model is uncertain, but the 
trend is consistent through time. Changes in scale tended to occur when data from an additional NEFSC clam survey 
(as in the case of 2002, 2008 and 2011) were dropped. 
 
 Results-Northern Area 
  
 The KLAMZ model for the northern area (GBK) incorporated a subset of the data available.  There were some 
years where coverage on GBK was poor (1982, 1983) and other years where GBK was not sampled (2005).  Swept 
area biomass for all years in which dredge sensors were deployed and GBK was sampled (1997 and after, excluding 
2005; Figure 15) were included as well.  Catch data was sparse, as GBK was not fished for 20 years between 1989 
and 2008.   
 
 Other model parameters were selected according to the methodology established in the whole stock model. 
Growth parameters and juvenile ratios were calculated for the appropriate subset of the data for the whole stock 

(animals from GBK). The 2
Rσ  parameter (see above) was chosen to minimize a concentrated likelihood function, 

that ignored the recruitment model component.  The recruitment model component is minimized by a 2
Rσ equal to 

zero, because it prefers a recruitment model with fewer parameters (see Appendix A4).  This choice could not be 
made naively however, as it is possible to overfit the recruitment index at the expense of other data.  In this case the 
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minimum of the concentrated likelihood occurred at  ln( 2
Rσ ) = -4, which would have resulted in the goodness of fit 

to the recruitment time series being less than the goodness of fit implied by the CV of the index itself.  The 2
Rσ

parameter was gradually increased until the goodness of fit to the index was greater than the goodness of fit implied 

by the survey CV (ln( 2
Rσ ) = -4.65; Figure 16).  Changing the 2

Rσ  parameter had little effect on the overall model 

(Figure 17).   
 
   The model fit the survey data reasonably well (Figure 16).  Based on the fit to the survey data, the northern 
area has been growing since the cessation of fishing there in 1989.  The upward trend in growth seems to be tapering 
off and has been essentially flat for approximately the last 5 years (Figure 18).  
 
 Surplus production (Figure 19) was positive from the late 1980's until 2010.  The decline in surplus production 
is probably due to declining recruitment since 1995 (Figure 19).   
 
 The scale parameter for the KLAMZ model, survey Q, which is analogous to survey dredge efficiency in 
efficiency corrected swept are biomass calculations was 0.14.  This value was comparable to the survey Q estimated 
for the whole stock (0.16).  The estimated Q was close to the mean of the prior distribution and indicated that the 
data provided to the KLAMZ model for the Northern area probably provided very little information about scale.  
The prior distribution we used was highly uninformative and (CV = 134% see TOR 2 above) and was not likely to 
influence the estimate of survey Q very much in the presence of data that informed scale.  The fact the estimated 
survey Q did not differ from mean of the prior probably means that the data were not informative regarding scale.   
 
 Bootstrap runs (n=500) for the Northern area KLAMZ model runs were fairly consistent (Figure 20).  This is 
reflected in the bootstrap CV which were generally tight (Table 4).  Delta method CV were generally very high 
(~100%).  The discrepancy between delta method CV based on the Hessian matrix and the bootstrap CV is probably 
due to differences between the two methods.  The delta method uncertainty reveals a flat likelihood and thus a wide 
CV in the area immediately around the converged solution.  If however the “flatness” of the likelihood surface is 
confined to a relatively small parameter space, the bootstrap solutions might all arrive at nearly the same solution 
and thus produce a relatively narrow CV.  Some evidence for this is provided by the high rate of convergence in the 

bootstrap runs (100% converged) and by the fact that profiles over various values of 2
Rσ (Figure 17) and survey Q 

(Figure 21) indicate that the solution is fairly stable over these parameters.  There is simply not enough information 
in these data to provide a strongly peaked likelihood surface.          
 
Internal Retrospective 
  
 Retrospective analysis indicates a shift in scale, but not trend as survey years are removed from the model 
(Figure 22). There are no indications of retrospective problems in the Northern area KLAMZ model.  
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Appendix A5. Table 1. Bootstrap and delta method CV for whole stock KLAMZ runs. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Biomass F Recruitment

Year Bootstrap cv Delta cv Bootstrap cv Delta cv Bootstrap cv Delta cv

1981 27.58 28.27 50.62 28.40 24.45 46.92

1982 25.43 19.80 51.56 19.88 22.57 41.23

1983 23.79 14.73 53.04 14.81 22.82 27.38

1984 22.60 13.31 54.64 13.39 21.47 28.36

1985 21.74 13.57 56.53 13.64 20.58 26.08

1986 21.01 14.40 58.40 14.48 20.53 27.24

1987 20.57 15.31 59.28 15.38 20.62 25.93

1988 20.23 15.98 59.53 16.06 20.76 21.73

1989 19.91 16.27 59.44 16.34 21.25 23.75

1990 19.78 16.33 58.92 16.41 21.13 23.80

1991 19.71 16.31 57.99 16.38 19.89 22.66

1992 19.42 16.27 56.90 16.34 18.26 21.67

1993 18.80 16.44 57.21 16.50 19.44 19.49

1994 18.54 16.36 57.44 16.41 17.34 22.45

1995 18.05 16.05 57.04 16.09 17.15 22.85

1996 17.58 15.92 56.69 15.96 19.28 20.31

1997 17.30 15.99 56.86 16.02 19.02 23.32

1998 17.15 16.09 56.15 16.12 19.53 22.66

1999 17.07 16.20 55.91 16.24 19.90 25.74

2000 17.07 16.30 55.70 16.34 19.89 26.17

2001 17.09 16.41 55.72 16.46 19.21 24.45

2002 17.12 16.54 56.11 16.60 19.84 27.88

2003 17.20 16.64 57.09 16.70 20.79 29.18

2004 17.33 16.76 58.46 16.83 21.33 29.29

2005 17.49 16.91 59.91 16.97 21.21 28.56

2006 17.63 17.05 61.53 17.13 20.67 26.88

2007 17.75 17.22 63.41 17.30 20.78 23.39

2008 17.79 17.34 64.94 17.42 20.33 28.27

2009 17.82 17.52 66.30 17.59 21.00 28.79

2010 17.84 17.82 67.19 17.89 22.59 25.45

2011 17.88 18.12 67.41 18.19 NA NA
mean 19.23 16.72 58.32 16.78 20.45 26.40
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Appendix A5. Table 2. Mean, median and quantiles of relative biomass change from 2008 to 
2011, comparing projections from the last assessment to the current KLAMZ model results.   
 

change from 2008 to 2011 
Statistic Proj 2009 This Assessment 
Q10% -7.54% -14.63% 
Mean -5.72% -13.55% 

Median -5.63% -13.50% 
Q90% -3.80% -12.50% 

 
 
 
Appendix A5. Table 3. Bootstrap and delta method CV for southern area KLAMZ runs. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Biomass Fishing Mortality Recruitment
Year Bootstrap CV Delta CV Bootstrap CV Delta CV Bootstrap CV Delta CV
1981 56.48 5.46 25.60 5.56 59.88 16.53
1982 57.17 6.30 24.28 6.42 55.42 15.85
1983 57.74 7.78 23.75 7.91 54.17 15.11
1984 58.08 9.10 23.61 9.24 53.81 14.71
1985 58.59 10.15 23.68 10.32 53.84 14.26
1986 59.07 11.00 23.87 11.17 57.68 13.82
1987 60.19 11.61 24.04 11.82 60.74 13.37
1988 61.47 12.10 24.16 12.33 62.41 12.86
1989 62.89 12.47 24.19 12.72 56.66 12.61
1990 63.19 12.72 24.10 12.96 51.71 12.26
1991 62.69 12.82 23.90 13.03 47.89 11.84
1992 61.13 12.75 23.63 12.97 43.65 11.31
1993 58.90 12.60 23.42 12.82 45.27 10.88
1994 57.26 12.41 23.30 12.59 41.87 11.00
1995 55.59 12.24 23.12 12.39 40.87 10.97
1996 54.10 12.06 22.91 12.19 42.47 10.90
1997 53.12 11.87 22.70 11.99 47.17 11.21
1998 52.97 11.79 22.53 11.93 51.52 11.27
1999 53.34 11.77 22.57 11.92 54.75 11.36
2000 54.14 11.83 22.67 11.99 56.99 11.38
2001 55.16 11.93 22.82 12.13 58.42 11.32
2002 56.43 12.11 23.08 12.36 55.56 11.37
2003 57.89 12.38 23.44 12.67 52.08 11.36
2004 59.41 12.71 23.87 13.04 48.71 11.06
2005 60.83 13.12 24.26 13.46 49.87 11.70
2006 62.18 13.45 24.75 13.89 51.36 11.98
2007 64.03 13.92 25.43 14.46 53.19 12.00
2008 66.27 14.55 26.14 15.14 51.26 12.98
2009 68.06 15.09 27.00 15.70 50.15 13.63
2010 69.15 15.57 27.88 16.18 50.43 14.33
2011 69.29 15.97 28.85 16.66 NA NA
mean 59.57 11.99 24.18 12.26 51.99 12.51
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Appendix A5. Table 4. Bootstrap and delta method CV for GBK area KLAMZ runs. 
 
 

 Biomass  Fishing Mortality Recruitment  
Year Bootstrap CV Delta CV Bootstrap CV Delta CV Bootstrap CV Delta CV 
1981 70.64 99.01 NA NA 27.70 97.13 
1982 65.04 99.13 NA NA 27.76 97.14 
1983 59.55 99.15 NA NA 27.69 97.43 
1984 54.31 99.16 46.48 97.38 25.06 97.97 
1985 49.38 99.14 41.49 96.97 23.96 97.70 
1986 44.58 99.14 37.18 96.54 24.20 97.53 
1987 39.84 99.16 33.47 96.08 24.57 97.44 
1988 35.41 99.18 30.24 95.70 24.62 97.44 
1989 31.50 99.21 27.50 95.45 24.61 97.55 
1990 28.19 99.23 25.27 95.27 24.41 97.81 
1991 25.57 99.24 NA NA 24.70 97.83 
1992 23.53 99.22 NA NA 22.19 98.03 
1993 21.99 99.19 NA NA 21.33 98.45 
1994 20.72 99.12 NA NA 19.37 98.45 
1995 19.62 99.01 NA NA 17.95 98.76 
1996 18.40 98.87 NA NA 18.18 98.43 
1997 16.99 98.72 NA NA 14.43 98.30 
1998 15.49 98.55 NA NA 15.30 98.41 
1999 14.03 98.35 NA NA 14.53 98.02 
2000 12.70 98.10 NA NA 15.37 98.22 
2001 11.65 97.76 NA NA 16.78 97.74 
2002 10.93 97.38 NA NA 18.34 97.42 
2003 10.65 97.02 NA NA 20.15 97.26 
2004 10.82 96.63 NA NA 21.50 97.11 
2005 11.36 96.18 NA NA 22.32 97.25 
2006 12.13 95.92 NA NA 23.11 97.72 
2007 12.98 95.69 NA NA 25.04 97.79 
2008 13.84 95.55 NA NA 25.17 98.13 
2009 14.67 94.86 14.67 98.91 26.83 96.86 
2010 15.46 94.10 15.45 99.08 30.11 95.66 
2011 16.28 93.27 16.23 99.16 NA NA 
mean 26.07 97.88 28.80 97.05 22.24 97.70 
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Appendix A5. Figure 1.  Whole stock survey data and swept area biomass estimates with 
approximate 95% confidence intervals. 
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Appendix A5.  Figure 2.  Whole stock survey data and swept area biomass estimates with 
approximate 95% confidence intervals and KLAMZ model fits with goodness of fit statistics and 
estimated catchability parameters. 
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Appendix A5. Figure 3.  Some population dynamics, shown as rates, estimated in KLAMZ for 
the whole stock. 
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Appendix A5.  Figure 4. Total biomass (1000 mt) estimated for the whole stock. 
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Appendix A5.  Figure 5. Retrospective patterns in total biomass for the years 2000-2011 using 
the base case whole stock KLAMZ model.
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Appendix A5. Figure 6. Historical retrospective pattern in basecase whole stock KLAMZ models.
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Appendix A5. Figure 7. Build a bridge.  The steps involved in updating the KLAMZ model from 
the 2009 assessment to the current base case whole stock KLAMZ version.  Not all runs 
converged (red lines) and so asymptotic confidence intervals based on the delta method were not 
always available. 
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Appendix A5. Figure 8. The data with approximate 95% confidence intervals used to model the 
southern area (SVA to SNE) with KLAMZ. 
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Appendix A5. Figure 9. Sensitivity to 2
Rσ the variance in the random walk recruitment parameter 

(RVAR). 
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Appendix A5. Figure 10. KLAMZ model fit to the southern area. 
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Appendix A5. Figure 11. Biomass (1000 mt) estimated using KLAMZ for the southern area. 
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Appendix A5. Figure 12. Population dynamics as rates over time for the southern area. 
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Appendix A5. Figure 13. Bootstrap iterations of the KLAMZ model biomass estimates for the 
southern area.  The base case is shown in red. 
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Appendix A5. Figure 14. Retrospective patterns in total biomass for the years 2000-2011 using 
the base case southern area KLAMZ model. 
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Appendix A5. Figure 15. The data with approximate 95% confidence intervals used to model the 
northern area (GBK) with KLAMZ. 
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Appendix A5. Figure 16. KLAMZ model fit to the northern area (GBK). 
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Appendix A5. Figure 17. Sensitivity to σ R
2

  in total biomass for northern area KLAMZ model 
fit. 
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Appendix A5. Figure 18. Trend in biomass in the northern area. 
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Appendix A5. Figure 19. Population dynamics as rates from KLAMZ model on northern area. 
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Appendix A5. Figure 20. Bootstrap iterations of the KLAMZ model biomass estimates for the 
northern area.  The base case is shown in red. 
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Appendix A5. Figure 21. Profile over survey Q for the northern area. 
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Appendix A5. Figure 22. Retrospective patterns in total biomass for the years 2000-2011 using 
the base case northern area KLAMZ model. 
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Appendix A6: SS3 diagnostics for the southern area 
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Plots created using the 'r4ss' package in R 
Stock Synthesis version: SS−V3.24f 
StartTime: Thu Dec 6 12:28:02 2012 
Data_File: Surfclam_South−1.dat 
Control_File: Surfclam_South−1.ctl 
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Appendix A7: SS3 Diagnostics for the GBK area 
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Plots created using the 'r4ss' package in R 
Stock Synthesis version: SS−V3.24f 
StartTime: Wed Jan 16 11:47:53 2013 
Data_File: Surfclam_GBK−1.dat 
Control_File: Surfclam_GBK−1.ctl 
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Appendix A8: Swept area biomass analysis 
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Efficiency corrected swept-area biomass 
 
 Efficiency corrected swept area biomass and catch/biomass fishing mortality estimates have been used in past 
assessments to provide management advice.  Although they no longer serve that purpose, they are still used to 
estimate scale in KLAMZ modeling.      
 

Efficiency corrected swept area biomass and catch/biomass fishing mortality estimates were calculated 
with CVs for surfclams during 1997-2011 (years with dredge performance sensors deployed on surveys) on a 
regional basis, using the methods described in NEFSC (2010) (Table 1-2 and Figures 1-2). 
 
 Efficiency corrected swept-area biomass and fishing mortality estimates in this assessment for years prior to 
2011 differ from estimates in previous assessments due to: 1) changes after the 2011 survey in the criteria used to 
judge a “bad” (with poor gear performance) survey tow; 2) the availability of data for 2011 that could be borrowed 
to help fill “holes” (unsampled strata) in the survey data for 2008; 3) new shell length meat weight relationships; 4) 
the updated estimate of survey dredge capture efficiency; and 5) use of a new survey dredge selectivity curve to 
calculate stock biomass.   
 

A historical retrospective analysis was carried out to demonstrate the stability of efficiency corrected swept 
area biomass estimates.  Swept-area biomass and fishing mortality calculations have changed from assessment to 
assessment as additional survey data accumulated and, mainly, as estimates of survey dredge efficiency were refined 
(Table 3, Figure 3).  

 
Working group members were interested in seeing the ratio of swept area biomasses by region (Figure 4). 
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Appendix A8. Table 1. Efficiency corrected swept-area biomass estimates (1000 mt) and CVs 
for surfclams (120+ mm SL), by region. 

   
 
  

Estimate CV

0.15

INPUT: Dredge width (nm) 0.00082

Area sw ept per standard tow  (a, nm2) 0.00012 10%

Area of assessment region (A, nm2) - no correction for stations with unsuitable clam habitat

S. Virginia and N. Carolina (SVA) 3,119 10%

Delmarva (DMV) 4,660 10%

New  Jersey (NJ) 5,078 10%

Long Island (LI) 2,917 10%

Southern New  England (SNE) 4,321 10%

Georges Bank (GBK) 5,772 10%

Total 25,867

INPUT: Fraction suitable habitat (u)

S. Virginia and N. Carolina (SVA) 100% 10%

Delmarva (DMV) 100% 10%

New  Jersey (NJ) 100% 10%

Long Island (LI) 100% 10%

Southern New  England (SNE) 100% 10%

Georges Bank (GBK) 88% 10%

S. Virginia and N. Carolina (SVA) 3,119 14% S. Virginia and N. Carolina (SVA) 0% 10%

Delmarva (DMV) 4,660 14% Delmarva (DMV) 0% 10%

New  Jersey (NJ) 5,078 14% New  Jersey (NJ) 0% 10%

Long Island (LI) 2,917 14% Long Island (LI) 0% 10%

Southern New  England (SNE) 4,321 14% Southern New  England (SNE) 0% 10%

Georges Bank (GBK) 5,079 14% Georges Bank (GBK) 0% 10%

INPUT: Original survey mean catch from fishable stock (kg/tow , for tows adjusted to nominal tow distance using sensors)

Estimates CV Estimates CV Estimates CV Estimates CV Estimates CV Estimates CV

S. Virginia and N. Carolina (SVA) 120+ mm 0.0230 42% 0.0887 42% 0.4486 59% 0.0000 0% 0.0030 100% 0.0065 100%

Delmarva (DMV) 120+ mm 2.4641 19% 1.3336 18% 2.5392 20% 0.7967 16% 0.4146 34% 0.8732 43%

New  Jersey (NJ) 120+ mm 6.3488 11% 4.5417 17% 3.8543 14% 2.3883 11% 3.9031 17% 1.8693 23%

Long Island (LI) 120+ mm 0.3672 66% 0.9268 51% 0.2407 64% 2.2825 36% 0.4535 24% 1.2362 35%

Southern New  England (SNE) 120+ mm 1.4769 34% 0.8400 66% 0.6545 24% 0.6508 43% 1.2236 47% 0.2323 27%

Georges Bank (GBK) 120+ mm 2.0151 21% 2.4106 32% 2.2545 43% 3.9404 23% 4.3871 21% 3.8483 25%

Sw ept-area biomass w ithout efficiency correction (B', 1000 mt):

S. Virginia and N. Carolina (SVA) 120+ mm 0.5817 47% 2.2433 47% 11.3402 63% 0.0000 20% 0.0753 102% 0.1641 102%

Delmarva (DMV) 120+ mm 93.0714 28% 50.3714 27% 95.9086 28% 30.0930 26% 15.6612 39% 32.9812 47%

New  Jersey (NJ) 120+ mm 261.3123 23% 186.9338 26% 158.6390 24% 98.2987 23% 160.6465 26% 76.9379 31%

Long Island (LI) 120+ mm 8.6828 69% 21.9131 55% 5.6915 67% 53.9670 41% 10.7226 32% 29.2277 40%

Southern New  England (SNE) 120+ mm 51.7246 39% 29.4211 69% 22.9215 31% 22.7916 47% 42.8541 51% 8.1361 34%

Georges Bank (GBK) 120+ mm 82.9608 29% 99.2444 38% 92.8198 47% 162.2261 31% 180.6177 29% 158.4357 32%

SVA to SNE 415 17% 291 19% 295 16% 205 17% 230 21% 147 21%

Total (including GBK) 498 15% 390 17% 387 17% 367 17% 411 17% 306 19%

INPUT: Survey dredge efficiency (e) from Patch mod 0.234 132% 0.234 132% 0.234 132% 0.234 132% 0.234 132% 0.234 132%

Efficiency adjusted swept area fishable biomass (B, 1000 mt)

S. Virginia and N. Carolina (SVA) 120+ mm 2.486 140% 9.587 140% 48.463 146% 0.000 134% 0.322 167% 0.701 167%

Delmarva (DMV) 120+ mm 398 135% 215 135% 410 135% 129 134% 67 138% 141 140%

New  Jersey (NJ) 120+ mm 1,117 134% 799 135% 678 134% 420 134% 687 135% 329 136%

Long Island (LI) 120+ mm 37 149% 94 143% 24 148% 231 138% 46 136% 125 138%

Southern New  England (SNE) 120+ mm 221 138% 126 149% 98 136% 97 140% 183 141% 35 136%

Georges Bank (GBK) 120+ mm 355 135% 424 137% 397 140% 693 136% 772 135% 677 136%

SVA to SNE 1,775 133% 1,243 133% 1,259 133% 877 133% 983 134% 630 134%

Total (including GBK) 2,130 133% 1,667 133% 1,655 133% 1,570 133% 1,755 133% 1,307 133%

Low er bound for 80% confidence intervals on fishable biomass (1000 mt, for lognormal distribution with no bias correction)

Estimates Estimates Estimates Estimates Estimates Estimates 

S. Virginia and N. Carolina (SVA) 120+ mm 0.655 2.526 12.338 0.074 0.160

Delmarva (DMV) 120+ mm 108 59 111 35 18 37

New  Jersey (NJ) 120+ mm 305 217 185 115 187 89

Long Island (LI) 120+ mm 9 24 6 61 12 33

Southern New  England (SNE) 120+ mm 59 32 26 26 48 9

Georges Bank (GBK) 120+ mm 96 114 104 188 209 183

SVA to SNE 488 341 346 241 269 172

Total (including GBK) 586 458 455 431 482 358

Upperbound for 80% confidence intervals on fishable biomass (1000 mt, for lognormal distribution with no bias correction)

S. Virginia and N. Carolina (SVA) 120+ mm 9.433 36.381 190.363 1.409 3.070

Delmarva (DMV) 120+ mm 1,464 792 1,509 472 251 535

New  Jersey (NJ) 120+ mm 4,089 2,936 2,485 1,538 2,522 1,215

Long Island (LI) 120+ mm 148 362 97 866 170 468

Southern New  England (SNE) 120+ mm 827 502 362 370 700 129

Georges Bank (GBK) 120+ mm 1,308 1,584 1,507 2,562 2,847 2,505

SVA to SNE 6,461 4,535 4,580 3,192 3,590 2,302

Total (including GBK) 7,741 6,072 6,026 5,715 6,391 4,769

INPUT: Nominal tow distance (dn, nm)

Habitat area in assessment region (A', nm2) INPUT: Biomass fraction in unsurveyd deep water
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Appendix A8.Table 2.  Fishing mortality estimates for surfclams based on catch and efficiency 
corrected swept area biomass estimates. 

 
 
 
 

12%

10%

INPUT: Landings (1000 mt, discard ~ 0)
Estimates 
for 1997

Estimates 
for 1999

Estimates for 
2002

Estimates for 
2005

Estimates 
for 2008

Estimates 
for 2011

S. Virginia and N. Carolina (SVA) 0.000 0.000 0.064 0.000 0.000 0.000
Delmarva (DMV) 1.540 0.648 4.489 1.668 3.223 1.427
New Jersey (NJ) 16.998 18.749 18.271 16.850 17.517 11.908
Long Island (LI) 0.073 0.157 1.130 0.759 1.317 0.437
Southern New England (SNE) 0.000 0.016 0.052 1.885 0.423 2.420
Georges Bank (GBK) 0.000 0.000 0.000 0.000 0.000 2.397
Total 18.611 19.570 24.006 21.163 22.481 18.589

Catch (1000 mt, landings + upper bound incidental mortality allowance)
S. Virginia and N. Carolina (SVA) 0.000 0.000 0.072 0.000 0.000 0.000
Delmarva (DMV) 1.725 0.726 5.028 1.868 3.610 1.598
New Jersey (NJ) 19.038 20.999 20.463 18.872 19.619 13.337
Long Island (LI) 0.081 0.176 1.265 0.850 1.475 0.489
Southern New England (SNE) 0.000 0.018 0.058 2.112 0.474 2.710
Georges Bank (GBK) 0.000 0.000 0.000 0.000 0.000 2.685
Total 20.844 21.919 26.886 23.702 25.178 20.820

Estimates 
for 1997 CV

Estimates for 
1999 CV

Estimates 
for 2002 CV

Estimates 
for 2005 CV

Estimates for 
2008 CV

Estimates for 
2011 CV

S. Virginia and N. Carolina (SVA) 120+ mm 2 140% 10 140% 48 146% 0 134% 0 167% 1 167%
Delmarva (DMV) 120+ mm 398 135% 215 135% 410 135% 129 134% 67 138% 141 140%
New Jersey (NJ) 120+ mm 1,117 134% 799 135% 678 134% 420 134% 687 135% 329 136%
Long Island (LI) 120+ mm 37 149% 94 143% 24 148% 231 138% 46 136% 125 138%

Southern New England (SNE) 120+ mm 221 138% 126 149% 98 136% 97 140% 183 141% 35 136%
Georges Bank (GBK) 120+ mm 355 135% 424 137% 397 140% 693 136% 772 135% 677 136%

SVA to SNE 1,775 133% 1,243 133% 1,259 133% 877 133% 983 134% 630 134%
Total (including GBK) 2,130 133% 1,667 133% 1,655 133% 1,570 133% 1,755 133% 1,307 133%

Fishing mortality (y-1)
S. Virginia and N. Carolina (SVA) 120+ mm 0.0000 NA 0.0000 NA 0.0015 146% 0.0000 NA 0.0000 NA 0.0000 NA

Delmarva (DMV) 120+ mm 0.0043 135% 0.0034 135% 0.0123 135% 0.0145 135% 0.0539 138% 0.0113 141%
New Jersey (NJ) 120+ mm 0.0170 134% 0.0263 135% 0.0302 135% 0.0449 134% 0.0286 135% 0.0406 136%
Long Island (LI) 120+ mm 0.0022 149% 0.0019 143% 0.0520 148% 0.0037 139% 0.0322 136% 0.0039 138%

Southern New England (SNE) 120+ mm 0.0000 138% 0.0001 149% 0.0006 136% 0.0217 141% 0.0026 142% 0.0780 137%
Georges Bank (GBK) 120+ mm 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0000 NA 0.0040 136%

SVA to SNE 0.0117 133% 0.0176 134% 0.0214 133% 0.0270 133% 0.0256 134% 0.0400 134%
Total (including GBK) 0.0098 133% 0.0131 134% 0.0162 133% 0.0151 133% 0.0143 134% 0.0193 134%

Estimates 
for 1997

Estimates 
for 1999

Estimates for 
2002

Estimates for 
2005

Estimates 
for 2008

Estimates 
for 2011

S. Virginia and N. Carolina (SVA) 120+ mm NA NA 0.0004 NA NA NA
Delmarva (DMV) 120+ mm 0.0012 0.0009 0.0033 0.0039 0.0144 0.0030
New Jersey (NJ) 120+ mm 0.0046 0.0071 0.0082 0.0122 0.0078 0.0110
Long Island (LI) 120+ mm 0.0005 0.0005 0.0131 0.0010 0.0087 0.0010

Southern New England (SNE) 120+ mm NA 0.0000 0.0002 0.0057 0.0007 0.0210
Georges Bank (GBK) 120+ mm NA NA NA NA NA 0.0011

SVA to SNE 0.0032 0.0048 0.0059 0.0074 299.3489 0.0070
Total (including GBK) 0.0027 0.0036 0.0045 0.0041 628.5781 0.0039

S. Virginia and N. Carolina (SVA) 120+ mm NA NA 0.0059 NA NA NA
Delmarva (DMV) 120+ mm 0.0160 0.0124 0.0453 0.0535 0.2024 0.0091
New Jersey (NJ) 120+ mm 0.0626 0.0968 0.1109 0.1648 0.1052 0.0458
Long Island (LI) 120+ mm 0.0088 0.0073 0.2069 0.0139 0.1194 0.0023

Southern New England (SNE) 120+ mm NA 0.0006 0.0022 0.0825 0.0099 0.1090
Georges Bank (GBK) 120+ mm NA NA NA NA NA NA

SVA to SNE 0.0428 0.0645 0.0779 0.0986 0.0938 0.0447
Total (including GBK) 0.0357 0.0480 0.0593 0.0551 0.0524 0.0175

INPUT: Assumed CV for catch

Lower bound for 80% confidence intervals for 

fishing mortality (y-1, for lognormal distribution 
with no bias correction)

Upper bound for 80% confidence intervals for 

fishing mortality (y-1, for lognormal distribution 
with no bias correction)

INPUT: Incidental mortality allowance

INPUT: Efficiency Corrected Swept Area Biomass 
for Fishable Stock (1000 mt)
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Appendix A8. Table 3. Historical retrospective analysis of efficiency corrected swept area biomass estimates. 
  SARC-26 SARC-30 SARC-37 SARC-44 SARC-49 New assessment 

Sizes All All 110+ and 120+ 120+ mm 120+ mm 120+ mm 

Year 
Biomass 
(1000 mt) 

Survey 
efficiency 

(e) 

Biomass 
(1000 

mt) 

Survey 
efficiency 

(e) 

Biomass 
(1000 

mt) 

Survey 
efficiency 

(e) 

Biomass 
(1000 

mt) 

Survey 
efficiency 

(e) 

Biomass 
(1000 

mt) 

Survey 
efficiency 

(e) 

Biomass 
(1000 mt) 

Survey 
efficiency 

(e) 
1997 1,130 0.897 1,106 0.588 1,146 0.460 1,913 0.226 1,276 0.372 2,130 0.234 
1999     1,596 0.276 1,460 0.276 1,503 0.226 1,005 0.372 1,667 0.234 
2002         803 0.389 1,479 0.226 1,082 0.372 1,655 0.234 
2005             1,066 0.226 954 0.256 1,570 0.234 
2008                 1,038 0.372 1,755 0.256 
2011                     1,307 0.234 

 
  SARC-26 SARC-30 SARC-37 SARC-44 SARC-49 New assessment 

Sizes All All 110+ and 120+ 120+ mm 120+ mm 120+ mm 

Year 
Fishing 
mortality 

Survey 
efficiency 

(e) 

Fishing 
mortality 

Survey 
efficiency 

(e) 

Fishing 
mortality 

Survey 
efficiency 

(e) 

Fishing 
mortality 

Survey 
efficiency 

(e) 

Fishing 
mortality

Survey 
efficiency 

(e) 

Fishing 
mortality 

Survey 
efficiency 

(e) 

1997 0.0181 0.897 0.0188 0.588 0.0180 0.460 0.0109 0.226 0.0163 0.372 0.0098 0.234 
1999     0.0137 0.276 0.0150 0.276 0.0146 0.226 0.0218 0.372 0.0131 0.234 
2002         0.0330 0.389 0.0182 0.226 0.0248 0.372 0.0162 0.234 
2005             0.0222 0.226 0.0248 0.372 0.0151 0.234 
2008                 0.0243 0.372 0.0143 0.234 
2011                     0.0193 0.234 
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Appendix A8. Figure 1.  Uncertainty in efficiency corrected swept area biomass estimates for 
surfclams in 2011.  Note that the x-axis differs in the panel for SVA and GBK but is the same in 
other panels to facilitate comparisons. 
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Appendix A8. Figure 2. Uncertainty in fishing mortality estimates for surfclams during 2011 
based on catch data and efficiency corrected swept-area biomass.  X-axes are scaled to the same 
maximum to facilitate comparisons. 

 
 
  

0

0.2

0.4

0.6

0.8

1

0.00

0.01

0.02

0.03

0.04

0.05

0 0.05 0.1 0.15 0.2 0.25 0.3

C
u

m
u

la
tive

 P
ro

b
a

b
ility

New Jersey (NJ)

0

0.2

0.4

0.6

0.8

1

0.00

0.01

0.02

0.03

0.04

0.05

0 0.05 0.1 0.15 0.2 0.25 0.3

P
ro

ba
bi

lit
y

Long Island (LI)

0

0.2

0.4

0.6

0.8

1

0.00

0.01

0.02

0.03

0.04

0.05

0 0.05 0.1 0.15 0.2 0.25 0.3

C
um

ulative P
robability

Southern New England (SNE)

0

0.2

0.4

0.6

0.8

1

0.00

0.01

0.02

0.03

0.04

0.05

0 0.05 0.1 0.15 0.2 0.25 0.3

P
ro

b
a

b
ili

ty

Fishing Mortality (F y-1)

SVA to SNE

0

0.2

0.4

0.6

0.8

1

0.00

0.01

0.02

0.03

0.04

0.05

0 0.05 0.1 0.15 0.2 0.25 0.3

C
u

m
u

lative
 P

ro
b

ab
ility

Fishing Mortality (F y-1)

Total

0

0.2

0.4

0.6

0.8

1

0.00

0.01

0.02

0.03

0.04

0.05

0 0.05 0.1 0.15 0.2 0.25 0.3

P
ro

ba
bi

lit
y

Delmarva (DMV)



 

474 
56th SAW Assessment Report  A. Atlantic Surfclam-Appendix A8 

Appendix A8. Figure 3. Historical retrospective analysis of efficiency corrected swept area biomass 
and exploitation rate (catch / biomass). 
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Appendix A8. Figure 4.  Percentage of total swept area biomass by region in 2011. 
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Appendix A9. Additional Sensitivity Testing and Decision Table 
Analyses 
  

Uncertainty in estimating the scale of biomass has been a challenge in surfclam assessments for many 
years.  We carried out additional sensitivity analyses to determine the likely effects of potential management actions 
(catch levels) if the biomass scale estimated in the basecase model is substantially too high or too low.  The biomass 
reference points used in this assessment mitigate the scale problem to some degree because the calculation used to 
determine biomass status B2011/(B1999/4) is robust and does not change appreciably if the overall scale estimated 
by the assessment model changes, as long as trend can be estimated with relative accuracy and precision.  In 
contrast, the calculation used to determine fishing mortality status F=M=0.15 is not robust to scale because it 
changes in proportion to the overall scale estimated by the assessment model.   

In this appendix we estimate the probability of overfishing/overfished status for the entire stock and for the 
southern component by comparing projections against a wide range of possible biomass scales and catch levels (see 
TOR 4 and TOR 7 in the main document for the methods used in calculating overfished/overfishing status).   
 If the true catchability q for the NEFSC clam survey is higher than estimated in the basecase assessment, then 
the true biomass will be lower than estimated and vice-versa. The q estimated in the basecase model was 0.33, 
which was approximately equal to the 64th percentile of our prior distribution.  It is possible that we misestimated q.  
With this in mind, one our sensitivity tests assumes that the true q is equal to the 75th percentile of our prior 
distribution so that true biomass levels are substantially lower than estimated in the basecase model.   Other 
sensitivity analyses assume that the true q is equal to the 25th percentile of our prior distribution so that the true 
biomass level is much higher than estimated in the basecase model.  These values of q produce a wide range of 
biomass estimates (Table A9.1).  The two sensitivity runs are hereafter referred to as “high q” and “low q” and will 
be compared to the actual assessment runs called “basecase”.   
 

In projection scenarios we used the estimated q (0.33 = basecase) to calculate reference points.  The 
population variables (biomass and F) estimated in the high q and low q model runs were compared to the basecase 
reference point to determine the status of the population. This scenario demonstrates the possible outcomes of a 
situation in which the assessment was incorrect regarding scale, and the true scale of the biomass is considerably 
higher or lower than we believe. We tested several catch levels in projection scenarios, described in the main body 
of the report.  In order of increasing catch they are: status quo, quota and OFL (see TOR 7 and Table A9.2).  These 
catch levels were prorated between the southern area where most fishing occurs and GBK as described in the main 
body of the report (TOR 7).  Separate simulations were run for the southern area and GBK and the results each pair 
of simulations were combined to evaluate effects on the entire stock. 

Because a high q results in a lower biomass, high q is more likely to result in an overfished/overfishing 
status determination.  The scenario in which an overfished/overfishing designation was most likely to occur was 
when the population was fished at the OFL level, particularly when true biomass was lower than estimated using our 
basecase model (Figure A9.3).  Under the high q-low biomass state of nature, the cumulative probability of 
overfished status during any of the years from 2013 – 2017 was unlikely (probability < 10%) using the status quo or 
quota catch levels, but was relatively likely (45%) when using the OFL catch scenario (Table A9.3). Fishing at the 
OFL level is not currently allowed under the surfclam FMP.  

The probability of overfishing at any point during the years 2013-2017 was essentially zero (Figure A9.4) 
at any level of q, unless the catch was set at the OFL, when overfishing was almost inevitable in simulations.      
 In the low q scenario, the population was unlikely to be overfished or have overfishing occur at any point over 
the next five years (Table A9.3; Figure A9.5 – A9.8).  
 For the southern area only and high q state, the true biomass in 2011 tended to stay above the threshold (Figure 
A9.9).  In the high q state, the annual fishing mortality trajectory fell below the F threshold, except in F=OFL 
scenario (Figure A9.10).  
 Reference points are defined for the whole stock but the maximum annual probability of a hypothetical 
overfished condition for the southern area using the hypothetical reference point Bthreshold=B1999/4 for the south in any 
year between 2013 and 2017 was generally less than 5% except in the F=OFL scenario, where it rose to about 17% 
(Figure A9.11).  The cumulative probability of overfished status over that time period varies from 14% to 42% 
(Table A9.4; Figure A9.12).  Overfished status was unlikely under all fishing scenarios when testing the low q state 
(Figures A9.13 and A9.15; Table A9.4).   

The maximum annual probability of hypothetical overfishing the southern area over the years from 2013 to 
2017 was zero regardless of the q used, unless fishing was set to the OFL (Figures A9.14 and A9.16; Table A9.4).   
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Overfished status determinations for the northern (GBK) area are not possible at this time due to a lack of 
reference points.  The likely trajectory of the population biomass given the various states of q and fishing scenarios 
is available in Table (A9.2) and Figures (A9.17 – A9.18). 

Overfishing the northern area is unlikely (cumulative probability through 2017 < 1%), except where 
fishing is set to the OFL (Figures A9.19 – A9.22; Table A9.5).  

Potential effects on biomass were summarized using an additional method.  We also present results based 
on the probability that the stock would fall below the “true” (based on the q being tested) value of B1999/4 (Table 
A9.6). In this case the each state of nature (or q level) would have a unique reference point.  In contrast, the method 
used in all other analyses summarizes results based on the probability that the stock falls below the B1999/4 biomass 
level estimated in the basecase assessment, so that each q level is tested against the same reference point.   

These sensitivities demonstrate that conclusions about the probability of overfishing or overfished stock 
status during 2011-2018 using the basecase model would likely not change under a wide range of true biomass 
levels and catches at the status-quo or quota levels.  However, overfishing and overfished conditions are likely at the 
OFL which is currently not permitted in the FMP.   
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Table A9.1. Biomass in 2011 given the basecase and 2 sensitivity scenarios used as states of 
nature in decision table analysis, one in which the biomass was underestimated in the base case 
(low q) and one in which the biomass was overestimated (high q). 

Region  q=0.11 
q=0.33 
Basecase 

q=0.39 

South  2,399,830  704,366  600,320 

North  1,118,680  370,217  312,684 

Total  3,518,510  1,074,583  913,004 
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Table A9.2. Biomass in projections given different sensitivity scenarios involving a range of true states of nature (biomass level) and 
possible management actions (catch levels). 

State of nature: q low (B high)

Status‐quo  Quota F=0.15

Year  South  North  Total South North Total South North Total

2011  2,399,830  1,118,680  3,518,510 2,399,830 1,118,680 3,518,510 2,399,830 1,118,680 3,518,510
2012  2,379,060  1,027,710  3,406,770 2,379,060 1,027,710 3,406,770 2,379,060 1,027,710 3,406,770
2013  2,350,010  939,531  3,289,541 2,350,010 939,531 3,289,541 2,350,010 939,531 3,289,541
2014  2,294,130  840,714  3,134,844 2,288,940 840,714 3,129,654 2,247,970 822,088 3,070,058
2015  2,298,590  753,353  3,051,943 2,288,690 753,353 3,042,043 2,213,700 722,861 2,936,561
2016  2,382,780  683,152  3,065,932 2,368,600 683,152 3,051,752 2,264,670 645,876 2,910,546
2017  2,322,830  637,951  2,960,781 2,305,000 637,951 2,942,951 2,177,370 597,389 2,774,759
2018  2,400,280  668,168  3,068,448 2,379,180 668,168 3,047,348 2,230,390 626,192 2,856,582
2019  2,488,280  710,556  3,198,836 2,464,300 710,556 3,174,856 2,296,280 667,943 2,964,223
2020  2,574,860  756,680  3,331,540 2,548,360 756,680 3,305,040 2,362,280 713,381 3,075,661
2021  2,657,440  803,286  3,460,726 2,628,730 803,286 3,432,016 2,425,390 758,827 3,184,217

 
State of nature: q high (B low)

Status‐quo  Quota F=0.15

Year  South  North  Total South North Total South  North Total

2011  600,320  312,684  913,004 600,320 312,684 913,004 600,320  312,684 913,004
2012  595,561  285,915  881,476 595,561 285,915 881,476 595,561  285,915 881,476
2013  587,428  260,080  847,508 587,428 260,080 847,508 587,428  260,080 847,508
2014  576,571  227,784  804,355 571,561 227,784 799,345 532,181  209,198 741,379
2015  584,775  199,284  784,059 575,246 199,284 774,530 503,376  168,882 672,258
2016  626,825  176,141  802,966 613,143 176,141 789,284 513,398  139,021 652,419
2017  625,105  160,555  785,660 607,876 160,555 768,431 485,513  120,271 605,784
2018  659,520  166,515  826,035 639,107 166,515 805,622 496,442  124,930 621,372
2019  697,259  176,256  873,515 674,032 176,256 850,288 512,770  134,134 646,904
2020  733,435  187,321  920,756 707,722 187,321 895,043 528,862  144,568 673,430
2021  767,295  198,728  966,023 739,385 198,728 938,113 543,581  154,801 698,382



 

480 
56th SAW Assessment Report  A. Atlantic Surfclam-Appendix A9 

Table A9.3. Decision table for the whole surfclam stock, showing cumulative probability of 
overfished/overfishing status in any of the 5 years during 2013-2017, using 3 three different 
catch scenarios and assuming three states of nature (high, basecase and low biomass levels) 
 

Whole stock overfished status probability 

Low q (high B)  Basecase  High q (low B)
Catch 

Status quo  0.001  0.019  0.082 

Quota  0.001  0.022  0.098 

OFL  0.002  0.122  0.448 

Whole stock overfishing probability 

Low q (high B)  Basecase  High q (low B)
Catch 

Status quo  0  0  0 

Quota  0  0  0.001 

OFL  0  0.99  1 
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Table A9.4. Decision table for the southern area, showing cumulative probability of 
overfished/overfishing status in any of the 5 years from 2013-2017, using 3 three different catch 
scenarios and assuming three states of nature (high, basecase and low biomass levels). 
 
 

Southern area overfished status probability 

Low q (high B)  Basecase  High q (low B)
Catch 

Status quo  0  0.053  0.136 

Quota  0  0.061  0.156 

OFL  0  0.163  0.42 

Southern area overfishing probability 

Low q (high B)  Basecase  High q (low B)
Catch 

Status quo  0  0  0 

Quota  0  0  0 

OFL  0  0.99  1 
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Table A9.5. Decision table for the northern area, showing cumulative probability of 
overfished/overfishing status in any of the 5 years from 2013-2017, using 3 three different catch 
scenarios and assuming three states of nature (high, basecase and low biomass levels). 

Northern area overfishing probability 

Low q (high B)  Basecase  High q (low B)
Catch 

Status quo  0  0  0.002 

Quota  0  0  0.003 

OFL  0  0.99  1 
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Table A9.6. Decision table for the whole stock and southern area, showing cumulative 
probability of overfished/overfishing status in any of the 5 years from 2013-2017, using 3 three 
different catch scenarios, and assuming three states of nature (high, basecase and low biomass 
levels).  In this case the biomass reference point is derived from each assessment outcome (i.e. in 
the low q outcome, the reference point B1999/4 is based on the low q biomass in 1999). 

Whole stock overfished status probability 

Low q (high B)  Basecase  High q (low B) 
Catch 

Status quo  0.001  0.019  0.004 

Quota  0.001  0.022  0.006 

OFL  0.002  0.122  0.118 

Southern area overfished status probability 

Low q (high B)  Basecase  High q (low B) 
Catch 

Status quo  0.003  0.053  0.027 

Quota  0.004  0.061  0.032 

OFL  0.006  0.163  0.139 
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Figure A9.1 Biomass results for projections with the high q (low biomass) scenario in which true 
whole stock biomass was substantially lower than estimated in the basecase model. The biomass 
reference point is from the basecase model. 
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Figure A9.2. Fishing mortality results for projections with the high q (low biomass) scenario in 
which true whole stock biomass was substantially lower than estimated in the basecase model.  
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Figure A9.3.  Biomass results for projections with the high q (low biomass) scenario in which 
whole stock biomass was substantially lower than estimated in the basecase model.  Probabilities 
are for overfished stock status occurring given the minimum biomass projected between 2013-
2017. The biomass reference point is from the basecase model. 
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Figure A9.4.  Fishing mortality results for projections with the high q (low biomass) scenario in 
which whole stock biomass was substantially lower than estimated in the basecase model. 
Probabilities are for overfishing occurring given the minimum biomass projected between 2013-
2017. 

 
  



 

488 
56th SAW Assessment Report  A. Atlantic Surfclam-Appendix A9 

Figure A9.5. Biomass results for projections with the high q (low biomass) scenario in which 
true whole stock biomass was substantially larger than estimated in the basecase model. The 
biomass reference point is from the basecase model. 
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 Figure A9.6. Fishing mortality results for projections with the low q (high biomass) scenario in 
which true whole stock biomass was substantially larger than estimated in the basecase model. 
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Figure A9.7.  Biomass results for projections with the low q (high biomass) scenario in which 
whole stock biomass was substantially larger than estimated in the basecase model.  Probabilities 
are for overfished stock status occurring given the minimum biomass projected between 2013-
2017. The biomass reference point is from the basecase model. 
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Figure A9.8.  Fishing mortality results for projections with the low q (high biomass) scenario in 
which whole stock biomass was substantially larger than estimated in the basecase model. 
Probabilities are for overfishing occurring given the minimum biomass projected between 2013-
2017. 

 
  



 

492 
56th SAW Assessment Report  A. Atlantic Surfclam-Appendix A9 

Figure A9.9. Biomass results for projections with the high q (low biomass) scenario in which 
true southern area biomass was substantially lower than estimated in the basecase model. The 
biomass reference point is from the basecase model. 
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Figure A9.10. Fishing mortality results for projections with the high q (low biomass) scenario in 
which true southern area biomass was substantially lower than estimated in the basecase model. 
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 Figure A9.11.  Biomass results for projections with the high q (low biomass) scenario in which 
southern area biomass was substantially lower than estimated in the basecase model.  
Probabilities are for overfished stock status occurring given the minimum biomass projected 
between 2013-2017. The biomass reference point is from the basecase model. 
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Figure A9.12.  Fishing mortality results for projections with the high q (low biomass) scenario in 
which southern area biomass was substantially lower than estimated in the basecase model. 
Probabilities are for overfishing occurring given the minimum biomass projected between 2013-
2017. 
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Figure A9.13. Biomass results for projections with the high q (low biomass) scenario in which 
true southern area biomass was substantially larger than estimated in the basecase model. The 
biomass reference point is from the basecase model. 
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Figure A9.14. Fishing mortality results for projections with the low q (high biomass) scenario in 
which true southern area biomass was substantially larger than estimated in the basecase model. 
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Figure A9.15.  Biomass results for projections with the low q (high biomass) scenario in which 
southern area biomass was substantially larger than estimated in the basecase model.  
Probabilities are for overfished stock status occurring given the minimum biomass projected 
between 2013-2017. The biomass reference point is from the basecase model. 
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Figure A9.16.  Fishing mortality results for projections with the low q (high biomass) scenario in 
which southern area biomass was substantially larger than estimated in the basecase model. 
Probabilities are for overfishing occurring given the minimum biomass projected between 2013-
2017. 
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Figure A9.17.  Biomass results for projections with the high q (low biomass) scenario in which 
true northern area biomass was substantially lower than estimated in the basecase model. 
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Figure A9.18 Biomass results for projections with the low q (high biomass) scenario in which 
true whole stock biomass was substantially lower than estimated in the basecase model. 
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Figure A9.19. Fishing mortality results for projections with the high q (low biomass) scenario in 
which true northern area biomass was substantially lower than estimated in the basecase model. 
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Figure A9.20.  Fishing mortality results for projections with the high q (low biomass) scenario in 
which northern area biomass was substantially lower than estimated in the basecase model. 
Probabilities are for overfishing occurring given the minimum biomass projected between 2013-
2017. 
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Figure A9.21. Fishing mortality results for projections with the low q (high biomass) scenario in 
which true northern area biomass was substantially larger than estimated in the basecase model. 
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Figure A9.22.  Fishing mortality results for projections with the low q (high biomass) scenario in 
which northern area biomass was substantially larger than estimated in the basecase model. 
Probabilities are for overfishing occurring given the minimum biomass projected between 2013-
2017. 
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