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Appendix 1: The KLAMZ (FPA) Assessment Model 

Introduction 

The KLAMZ assessment model (NEFSC 2000; 2001) is based on the Deriso-Schnute delay-

difference equation (Deriso 1980; Schnute 1985; Quinn and Deriso 1999).  The delay-difference 

equation is a relatively simple and implicitly age structured model that counts fish in either numerical 

or biomass units.  It gives the same results as explicitly age-structured models (e.g. Leslie matrix 

model) if fishery selectivity is “knife-edged”, somatic growth follows the von Bertalanffy equation, 

and natural mortality is the same for all age groups in each year.  Knife-edge selectivity means that all 

individuals alive in the model during the same year experience the same fishing mortality rate.2  

Natural and fishing mortality rates, growth parameters and recruitment may change from year to year, 

but delay-difference calculations assume that all individuals share the same mortality and growth 

parameters within each year.  

As in many other simple models, the delay difference equation explicitly distinguishes between 

two age groups.  In KLAMZ, the two age groups are called “new“ recruits and “old” recruits.  New 

recruits are individuals that recruited at the beginning or during the current year.  Old recruits are all 

older individuals in the model.  As described above, KLAMZ assumes that new and old recruits are 

fully vulnerable to the fishery.  

The most important differences between the delay-difference and other simple models (e.g. 

Prager 1994; Conser 1995; Jacobson et al. 1994) are that von Bertalanffy growth is used to calculate 

biomass dynamics and that the delay-difference model captures transient age structure effects due to 

variation in recruitment, growth and mortality exactly.  Transient effects on population dynamics are 

captured exactly because, as described above, the delay-difference equation is algebraically equivalent 

to an explicitly age-structured model with von Bertalanffy growth (Deriso 1978; 1980).  As described 

above, delay-difference calculations can be carried out in units of biomass or numerical abundance.  

                                                 
2 In applications, assumptions about knife-edge selectivity can be relaxed by assuming the model tracks “fishable”, rather 
that total, biomass (NEFSC 2000a; 2000b).  An analogous approach assigns pseudo-ages based on recruitment to the 
fishery so that new recruits in the model are all pseudo-age k.  The synthetic cohort of fish pseudo-age k may consist of 
more than one biological cohort.  The first pseudo-age (k) can be the predicted age at first, 50% or full recruitment based a 
von Bertalanffy curve and size composition data (Butler et al. 2002).  The “incomplete recruitment” approach (Deriso 
1980) calculates recruitment to the model in each year Rt as the weighted sum of contributions from two or more cohorts 

due to spawning in successive years (i.e. ∑
=

−Π=
k

a
atat rR

1
where k is the age at full recruitment to the fishery, ra is the 

contribution of fish age k-a to the fishable stock, and Πt-a is the number or biomass of fish age k-a during year t).  
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The KLAMZ model includes simple numerical models as special cases (e.g. Conser 1995) because 

growth can be turned off so that all calculations are in numerical units (see below).  

The KLAMZ model incorporates a few extensions to Schnute’s (1985) revision of Deriso’s 

(1980) original delay difference model.  Most of the extensions facilitate tuning to a wider variety of 

data that anticipated in Schnute (1985), internal calculation of surplus production or are used to 

stabilize biomass estimates for the first few years in the model.   

The KLAMZ model is programmed in both Excel and in C++ using AD Model Builder 

libraries3.   The AD Model Builder version is faster, more reliable, includes a wider variety of tools for 

characterizing uncertainty, and I probably better for producing “official” stock assessment results.  The 

Excel version is slower but useful in developing prototype assessment models, teaching and checking 

calculations. 

 

 

Population dynamics 

 

The birth date for fish in the model and first day of the accounting year for catch data are 

assumed to be the the same in derivation of the delay-difference equation.  It is therefore natural (but 

not strictly necessary) to tabulate catch and other data using annual accounting periods that start on the 

assumed biological birthday of cohorts.  

Schnute’s (1985) delay-difference equation in the KLAMZ model is: 

ttt1t1-t1-tttt1t R J   - R B    - B  )  (1  B τρττρτρ ++ ++=  

where Bt is total biomass of individuals at the beginning of year t; ρ is Ford’s growth coefficient (see 

below); ttt MFZ
t ee −−− ==τ  is the fraction of the stock that survived in year t, Zt, Ft, and Mt are year-

specific instantaneous rates for total, fishing and natural mortality; and Rt is the biomass of new 

recruits (at age k) at the beginning of the year.  The natural mortality rate Mt may vary or be constant 

over time.  Instantaneous mortality rates in KLAMZ model calculations are biomass-weighted 

averages if von Bertalanffy growth is turned on in the model.  However, biomass-weighted mortality 

estimates in KLAMZ are the same as rates for numerical calculations because all individuals are fully 

recruited.  The growth parameter Jt = wt-1,k-1 / wt,k is the ratio of mean weight one year before 

                                                 
3 Otter Research Ltd., Box 2040, Sydney, BC, V8L 3S3 (otter@otter-rsch.com). 
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recruitment (age k-1 in year t-1) and mean weight at recruitment (age k in year t).  It is not necessary to 

specify body weights at recruitment age k and at age k-1 in the KLAMZ model (parameters Vt and vt-1 

in Schnute 1985) because the ratio Jt and recruitment biomass Rt contain the same information.   

Schnute’s (1985) original delay difference equation is: 

t1-k1,-tt1tk1,t1-t1-tttt1t N  - N B   - B  )  (1  B ww ρτττρτρ +++ ++=  

To derive the equation used in KLAMZ, substitute recruitment biomass Rt+1 for the product wt+1,k Nt+1,k 

and adjusted recruitment biomass Jt Rt = (wt-1,k-1/wt,k) wt,k Nt,k =  

wt-1,k-1 Nt for the last term on the right hand side.  The advantage in using the alternate parameterization 

for biomass dynamic calculations in KLAMZ is that recruitment is estimated directly in units of 

biomass and the number of growth parameters is reduced. 
 

 

Growth 
 

As described in Schnute (1985), biomass calculations in the KLAMZ model are based on Schnute 

and Fournier’s (1980) re-parameterization of the von Bertalanffy growth model:   

)-(1 / )  (1 ) w- (w  w w k-a1
1-kk1-ka ρρ +++=  

where wk and wk-1.  Schnute and Fournier’s (1980) growth model is the same as the traditional von 

Bertalanffy growth model ( )[ ]01 taK
a eWw −−

∞ −=  where W∞, K and t0 are parameters.  The two growth 

models are the same because ( ) ( )ρρ −−= −∞ 11kk wwW , K = -ln(ρ) and 

( ) ( )[ ] ( )ρρ lnln 110 −− −−= kkkk wwwwt .   

In the KLAMZ model, the growth parameters Jt can vary with time but ρ is constant.   Use of 

time-variable Jt values with ρ is constant is the same as assuming that the von Bertalanffy parameters 

Wmax and tzero change over time.  It is possible to accommodate a wide range growth patterns by 

changing only Wmax and tzero.  Growth parameters are usually estimated externally, rather than directly 

in the KLAMZ model.  The KLAMZ model uses catch-at-age information indirectly, if catch-at-age is 

used to estimate growth parameters. 
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Numerical population dynamics (growth turned off) 

 

 Growth can be turned on off so that abundance, rather than biomass, is tracked in the KLAMZ 

model.  Set Jt=1 and ρ=0 in the delay difference equation, and use Nt (for numbers) in place of Bt to 

get: 

1ttt1t R N   N ++ +=τ  

All of the calculations in KLAMZ for biomass dynamics are also valid for numerical dynamics. 

 

Instantaneous growth rates 

Instantaneous growth rate (IGR) calculations in the KLAMZ model are an extension to the original 

Deriso-Schnute delay difference model.  IGRs are an approximation used extensively in KLAMZ for 

calculating catch biomass and projecting stock biomass forward to the time at which surveys occur.  

IGR calculations are approximate because the instantaneous growth rate model approximates seasonal 

von Bertalanffy growth.  However, the approximation is reasonably accurate and preferable to ignoring 

seasonal growth during the fishing season (see “Solving the generalized catch equation” and 

“Predicted values for abundance indices” below).   

IGR for new recruits depends only on growth parameters: 

 )1ln(ln
,

1,1
t

tk

tkNew
t J

w
w

G ρρ −+=









= ++  

New recruit IGR is constant if the growth parameter Jt is constant. 

IGR for old recruits is a biomass-weighted average that depends on the current age structure 

and growth parameters.  Old recruit IGR naturally changes from year to year, even if growth 

parameters are constant, due to changes in the stocks age structure.  IGR for old recruits can be 

calculated easily by projecting biomass of old recruits St=Bt-Rt (escapement) forward one year with no 

mortality: 

  ( ) 11
* 1 −−−+= tttt BSS ρτρ  

where the asterisk (*) means just prior to the start of the subsequent year t+1.  By definition, the IGR 

for old recruits in year t is ( )tt
Old
t SSG *ln= .  Therefore, divide the expression for *

tS by St and take logs 

to get:  
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  ( ) 







−+= −

−
t

t
t

Old
t S

BG 1
11ln ρτρ  

IGR for the entire stock is the biomass weighted average of the IGR values for new and old 

recruits: 

  
t

Old
tt

New
tt

t B
GSGR

G
+

=  

Whole stock IGR varies over time, even if growth parameters are constant, due to changes in age 

structure.  All IGR values are zero if growth is turned off. 
 

Recruitment 

 In the Excel version of the KLAMZ model, annual recruitments are calculated teRt
Ω= where Ωt 

is an annual log recruitment parameter usually estimated in the model.   In the C++ version, recruitments 

are calculated based on log geometric mean recruitment (µ) and a set of annual log scale deviation 

parameters (ωt): 

  tt ωµ +=Ω  

The deviations ωt are constrained to average zero.4  With the constraint, estimation of µ and the set of ωt  

values (1+ n years parameters) is equivalent to estimation of the smaller set (n years) of Ωt values. 

 

Natural mortality 

 

 Natural mortality rates (M) are assumed constant in the Excel version of the KLAMZ model 

but can change from year to year in the AD Model Builder version based on covariates (e.g. predator 

density) or natural mortality rate process errors.  Natural mortality rate process errors are variation in 

predation, disease, parasitism and other biological factors that affect natural mortality in fish 

populations.  Calculations are basically the same as for survey covariates and survey process errors 

described below. 

                                                 
4 The constraint is implemented by adding 2ϖλ=L to the objective function, generally with λ = 1000. 



 

 198

Fishing mortality and catch 

 Fishing mortality rates (Ft) are calculated so that predicted and observed catch data (landings 

plus estimated discards in units of weight) “agree”.  It is not necessary, however, to assume that 

catches are measured accurately (see “Observed and predicted catch” ).   

Fishing mortality rate calculations in Schnute (1985) are applicable when catches are in units of 

numbers but catch data are usually in units of weight.  Calculation of predicted catches in units of 

weight is more complicated because somatic growth occurs throughout the year as fishing occurs.   

The KLAMZ model uses a generalized catch equation that incorporates continuous growth 

through the fishing season.  By the definition of instantaneous rates, the catch equation expresses catch 

as the product: 

ttt BFC =ˆ  

where tĈ was predicted catch weight (landings plus discard) and tB is average biomass.  

Following Ricker (1970) and Zhang and Sullivan (1988), let Xt=Gt-Ft-Mt be the net 

instantaneous rate of change for biomass.5  If the rates for growth and mortality are equal, then Xt=0, 

tt BB = and ttt BFC = .  If the growth rate Gt exceeds the combined rates of natural and fishing 

mortality (Ft + Mt), then Xt > 0.  If mortality exceeds growth, then Xt < 0.  In either case, with Xt≠0, the 

formula for average biomass in year y is derived by integrating ytX
t eBB 0= over t from zero to one: 

( )
t

t
X

t X
BeB

t−
−=

1  

When Xt≠0, the expression for tB is an approximation to the actual average biomass because Gt 

approximates the rate of change in mean body weight for von Bertalanffy growth.6 Average biomass 

can be calculated for new recruits, old recruits or for the whole stock by using either New
tG , Old

tG or Gt. 

In the Excel version of KLAMZ, the modified catch equation is solved analytically for Ft given 

Ct, Bt, Gt and M (see “Solving the generalized catch equation” below).  In the AD Model Builder 

                                                 
5 By convention, the instantaneous rates Gt, Ft and Mt are always expressed as numbers ≥ 0.  
6 The traditional catch equation tt

Z
tt ZBeFC t )1( −−= where Zt=Ft+Mt underestimates catch biomass for a given level 

of fishing mortality Ft and overestimates Ft for a given level of catch biomass.  The errors can be substantial for fast 
growing fish, particularly if recent recruitments were strong.  
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version, fishing mortality rates are calculated using a log geometric mean parameter (Φ) and a set of 

annual log scale deviation parameters (ψt): 

  teFt
ψ+Φ=  

where the deviations ψt are constrained to average zero. 

 

Solving the generalized catch equation 

Subtracting predicted catch from the generalized catch equation (see above) from the observed 

catch data gives:  

 ( ) ( ) 01
=

−
+= t

t

X
t

tt B
X

eFCFg
t

  

where Xt=Gt-Mt-Ft.  In the simplest case Xt=0, tt BB = and  Ft=Ct/Bt.   

If Xt≠0, then the Newton-Raphson algorithm (Kennedy and Gentle 1980) is used to solve for Ft.  

At each iteration of the algorithm, the current estimate i
tF is updated using: 

  ( )
( )it

i
ti

t
i

t Fg
FgFF

'
1 −=+   

where ( )itFg '  is the derivative with respect to i
tF .  Omitting subscripts, the derivative is: 

  ( ) ( )[ ]
2

2
'

X
FeFeeeBeFg

FF γγγ γγ −+−
−=

−

 

where γ=G-M.  Iterations continue until ( )itFg  and ( ) ( )[ ]11 ++ − i
t

i
t FgFgabs  are both ≤ 0.00001.   

Initial values are important in algorithms that solve the catch equation numerically (Sims 

1982).  If Mt+Ft > Gt so that  Xt < 0, then the initial value 0
tF is calculated according to Sims (1982).  If 

Mt+Ft < Gt so that Xt > 0, then initial values are calculated based on a generalized version of Pope’s 

cohort analysis (Zhang and Sullivan 1988): 

 ( )







 −
−=

t

tt
tt B

eCeBF
tt γγ

γ
5.05.0

0 ln  
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Surplus production 

Annual surplus production is calculated in KLAMZ by projecting biomass at the beginning of 

each year forward with no fishing mortality: 

 tt
-M

1-t1-t
-M

t
-M*

t R J e  -B L e  - B e )  (1  B ρρρ+=  

By definition, surplus production Pt=B*
t-Bt.  This exact formula is preferable to Jacobson et al.’s 

(2002) approximation tttt CBBP δ+−= +1  because the correction factor δ is not required. 

 

Per recruit modeling 

 

 Per recruit model calculations in the Excel version of the KLAMZ simulate the life of a 

hypothetical cohort of arbitrary size (e.g. R=1000) with constant M, F (survival) and growth (ρ and J) 

in a population initially at zero biomass.  In the first year: 

R  B1 =  

In the second year: 

  112 R J   - B  )  (1  B τρτρ+=  

In the third and subsequent years: 

1-t
2

t1 B   - B  )  (1  B τρτρ+=+t  

This iterative calculation is carried out until the sum of lifetime cohort biomass from one iteration to the 

next changes by less than a small amount (0.0001).  Total lifetime biomass, spawning biomass and yield 

in weight are calculated by summing biomass, spawning biomass and yield over the lifetime of the cohort 

(in each iteration).  Lifetime biomass, spawning biomass and yield per recruit are calculated by dividing 

totals by initial recruitment (R). 

 

Status determination variables 

 

 The user may specify a range of years (e.g. the last three years) to use in calculating recent average 

fishing mortality centFRe and biomass centBRe levels.  centFRe and centBRe  are often useful in calculation of 

ratios involving management targets (e.g. MSYcent FF /Re  and centBRe /BMSY). 
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Goodness of Fit and Parameter Estimation 

 

Parameters estimated in the KLAMZ model are chosen to minimize an objective function based on 

a sum of weighted negative log likelihood (NLL) components: 

 v

N

v
v L∑

Ξ

=

=Ξ
1
λ  

where NΞ is the number of NLL components (Lv) and the λv are emphasis factors used as weights.   The 

objective function Ξ  may be viewed as a NLL or a  negative log posterior distribution, depending on 

the nature of the individual Lv components and modeling approach.   

Except during sensitivity analyses, weighting factors for objective function components (λv) are 

usually set to one.  An arbitrarily large weighting factor (e.g. λv =1000) is used for “hard” constraints 

that must be satisfied in the model.  Arbitrarily small weighting factors (e.g. λv =0.0001) can be used 

for “soft” constraints.  For example, an internally estimated spawner-recruit curve or surplus 

production curve might be estimated with a small weighting factor to summarize stock-recruit or 

surplus production results with minimal influence on biomass, fishing mortality and other estimates 

from the model.  Use of a small weighting factor for an internally estimated surplus production or 

stock-recruit curve is equivalent to fitting a curve to model estimates of biomass and recruitment or 

surplus production in the output file, after the model is fit (Jacobson et al. 2002). 

 In practice, it is often convenient to use a different emphasis factor (λv,i) for each observation so 

that the importance of a few specific observations or instances of a constraint can be increased or 

decreased.  KLAMZ allows the user to specify observation- an instance-specific weights for most 

types of data and constraints. 

 

NLL kernels 

 

 NLL components in KLAMZ are generally programmed as “concentrated likelihoods”  to 

avoid calculation of values that do not affect derivatives of the objective function.  For x~N(µ,σ2), the 

complete NLL for one observation is: 

  ( ) ( )
2

5.02lnln 





 −

++=
σ

πσ uxL  
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The constant ( )π2ln  can always be omitted because does not affect derivatives.  If the standard 

deviation is known or assumed known, then ln(σ) can be omitted as well because it is a constant that 

does not affect derivatives.  In such cases, the concentrated negative log likelihood is:   

  
2

5.0 





 −

=
σ
µxL  

If there are N observations with different variances (known or assumed known) or different expected 

values, then: 

  ∑
=








 −
=

N

i i

iixL
1

2

5.0
σ
µ  

If the standard deviation for a normally distributed quantity is not known and is (in effect) 

estimated by the model, then one of two equivalent calculations is used.  Both approaches assume that 

all observations have the same variance and standard deviation.  The first approach is used when all 

observations have the same weight in the likelihood: 

  ( ) 







−= ∑

=

N

i
i uxNL

1

2ln5.0  

The second approach is equivalent but used when the weights for each observation (λi) may differ:  

( )∑
= 

















 −
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uxL
1

2

5.0ln
σ

σλ  

In the latter case, the maximum likelihood estimator: 

  
( )

N

xx
N

i
i

2

1

ˆ
ˆ

∑
=

−
=σ  

 (where x̂ is the average or predicted value from the model) is used explicitly for σ.  The maximum 

likelihood estimator is biased by N/(N-df) where df is degrees of freedom for the model.  The bias may 

be significant for small sample sizes but df is usually unknown. 

 

Observed and predicted catch 

In the AD Model Builder version, fishing mortality rates (based on the parametersΦ and ψt) are 

estimated to satisfy a NLL for observed and predicted catches: 
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2

0

ˆ
∑
=
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


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

 −
=

N

t t

tt
t
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where the standard error tcatcht CCV ˆ=κ with CVcatch and weights are wt supplied by the user.  The 

weights can be used, for example, if catch data in some years are less precise than in others.  The AD 

Model Builder version of KLAMZ can potentially estimate any or every catch in the time series. A few 

years of catches can be estimated in the Excel version of KLAMZ (see below) but catches are 

generally assumed measured without error.   

 

Initial population age structure 

  

In the KLAMZ model, old and new recruit biomass during the first year (R1 and S1) and 

biomass prior to the first year (B0) are estimated as log scale parameters.  Survival in the year prior to 

the first year (“year 0”) is 10
0

MFe −−=τ with F0 chosen to produce catch C0 (specified as data) from the 

estimated biomass B0.  IGRs during year 0 and year 1 are assumed equal (G0=G1) in catch calculations. 

  Biomass in the second year of as series of delay-difference calculations depends on biomass 

(B0) and survival (τ0) in year 0: 

1112001112 R J   - R B    - B  )  (1  B τρττρτρ ++=  

There is, however, there is no direct linkage between B0 and escapement biomass (S1=B1-R1) at the 

beginning of the first year.  

The missing link between B0, S1 and B1 means that the parameter for B0 tends to be relatively 

free and unconstrained by the underlying population dynamics model.  In some cases, B0 can be 

estimated to give good fit to survey and other data, while implying unreasonable initial age 

composition and surplus production levels.  In other cases, B0 estimates can be unrealistically high or 

low implying, for example, unreasonably high or low recruitment in the first year of the model (R1). 

Problems arise because many different combinations of values for R1, S1 and B0 give similar results in 

terms of goodness of fit.  This issue is common in stock assessment models that use forward simulation 

calculations because initial age composition is difficult to estimate.  It may be exacerbated in delay-

difference models because age composition data are not used to estimate intitial conditions.   
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The KLAMZ model uses two constraints to help estimate initial population biomass and initial age 

structure.7  The first constraint links IGRs for escapement (GOld) in the first years to an adjacent value.  

The purpose of the constraint is to ensure consistency in average growth rates (and implicit age 

structure) during the first few years.  For example, if IGRs for the first nG years are constrained8, then 

the NLL for the penalty is: 

 
( )
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2
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5.0
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where the standard deviation σG is supplied by the user.  It is usually possible to use the standard 

deviation of Old
tQ for later years from a preliminary run to estimate σG for the first few years.  The 

constraint on initial IGRs should be non-binding (λ≈1) because there is substantial natural variation in 

somatic growth rates due to variation in age composition. 

The second constraint links B0 to S1 and ensures conservation of mass in population dynamics 

between years 0 and 1.  In other words, the parameter for escapement biomass in year 1 is constrained 

to match an approximate projection of the biomass in year 0, accounting for growth, and natural and 

fishing mortality.  The constraint is intended to be binding and satisfied exactly (e.g. λ=1000) because 

incompatible values of S1 and B0 are biologically impossible.  In calculations:  

 101
01

MFGp eBS −−=  

where pS1 is the projected escapement in year 1 and B0 is the model’s estimate of total biomass in year 0.  

The instantaneous rates for growth and natural mortality from year 1 (G1 and M1) are used in place of G0 

and M0 because the latter are unavailable.  The NLL for the constraint: 

  ( )211
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uses a log scale sum of squares and an arithmetic sum of squares.  The former is effective when S1 is small 

while the latter is effective when S1 is large. 

                                                 
7 Quinn and Deriso (1999) describe another approach attributed to a manuscript by C. Walters. 
8 Normally, nG ≤ 2. 
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Goodness of fit for survey trends 

The NLL used to measure goodness-of-fit for abundance index data with lognormal errors is: 
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where Iv,t is an abundance index datum from survey v, hats “^” denote model estimates, σv,j was a log 

scale standard error (see below), and Nv was the number of observations.  There are two approaches to 

calculating standard errors for log normal abundance index data in KLAMZ.  The first is based on 

goodness of fit and the second is based on user specified CV’s (see below).  It is possible to use 

different approaches for different types of abundance index data in the same model.   

   Abundance indices with statistical distributions other than log normal may be useful, but are 

not currently programmed in the KLAMZ model.  For example, Butler et al. (in press) used abundance 

indices with binomial distributions in a delay-difference model for cowcod rockfish. 

 

Standard errors for goodness of fit 

 

The first approach to calculating standard errors for survey data is based on goodness of fit.  

The first approach assumes that all observations for one type of abundance index share the same 

standard error and estimates the standard error along with the rest of the parameters in the model (see 

“NLL kernels” above).   

  In the second approach, each observation has a potentially different standard error that is 

calculated based on its CV.  The second approach calculates log scale standard errors from arithmetic 

CVs supplied as data by the user (Jacobson et al. 1994): 

  ( )2
,, 1ln tvtv CV+=σ  

Arithmetic CV’s are usually available for abundance data.  It is sometimes convenient to use 

CVv,t=1.31 to get σv,t=1. 

There are advantages and disadvantages to both approaches.  CV’s carry information about the 

relative precision of abundance index observations.  However, CV’s usually overstate the precision of 
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data as a measure of fish abundance.9  Implicitly estimated standard errors are often larger and more 

realistic, but imply that all observations in the same survey are equally reliable. 

 

Predicted values for abundance indices 

 

Predicted values for abundance indices are calculated: 

tvvtv AQI ,, =
∧

 

where Qv is a survey scaling parameter (constant here but see below) that converts units of biomass to 

units of the abundance index.  Av,t is available biomass at the time of the survey.   

In the simplest case, available biomass is: 

  tv
Old
ttv

New
t X

tOldv
X

tNewvtv eSseRsA ,,
,,,

∆−∆− +=  

where sv,New and sv,Old are survey selectivity parameters for new recruits (Rt) and old recruits (St); 

tt
New
t

New
t MFGX −−= and tt

Old
t

Old
t MFGX −−= ; jv,t was the Julian date at the time of the survey, and 

∆v,t=jv,t/365 was the fraction of the year elapsed at the time of the survey.   

Survey selectivity parameter values (sv,New and sv,Old) are specified by the user and should be set 

between zero and one.  For example, a survey for new recruits would have sv,New=1 and sv,Old=0.  A 

survey that measured abundance of the entire stock would have sv,New=1 and sv,Old=1.   

Terms involving ∆v,t are used to project beginning of year biomass forward to the time of the 

survey, making adjustments for mortality and somatic growth.10  As described below, available 

biomass Av,t is adjusted further for nonlinear surveys, surveys with covariates and surveys with time 

variable Qv,t.  

 

Scaling parameters (Q) for log normal abundance data 

Scaling parameters for surveys with lognormal statistical errors were computed using the 

maximum likelihood estimator: 

                                                 
9 The relationship between data and fish populations is affected by a host of factors (process errors) that are not accounted 
for in CV calculations. 
10 It may be important to project biomass forward if an absolute estimate of biomass is available (e.g. from a hydroacoustic 
or daily egg production survey), if fishing mortality rates or high or if the timing of the survey varies considerably from 
year to year. 
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where Nv was the number of observations with individual weights greater than zero. The closed form 

maximum likelihood estimator gives the same answer as if scaling parameters are estimated as free 

parameters in the assessment model. 

 

 Survey covariates  

 Survey scaling parameters may vary over time based on covariates in the KLAMZ model.  The 

survey scaling parameter that measures the relationship between available biomass and survey data 

becomes time dependent: 

tvtvtv AQI ,,, =
∧

 

and 

  
∑

= =

vn

r
rtrd

vtv eQQ 1
,

,

θ

 

with nv covariates for the survey and parameters θr estimated in the model.   

Covariates might include, for example, a dummy variable that represents changes in survey 

bottom trawl doors or a continuous variable like average temperature data if environmental factors 

affect distribution and catchability of fish schools.  Dummy variables are either 0 or 1, depending on 

whether the effect was present in a particular year.  With dummy variables, Qv is the value of the 

survey scaling parameter with no intervention (dr,t=0).  For ease in modeling, it is useful to center 

continuous covariates around their mean: 

  rtrtr ddd ′−′= ,,  

where d’
r,t is the original covariate.  With covariates that are continuous and mean-centered, Qv is the 

value of the survey scaling parameter under average conditions (dr,t=0) and units for the covariate 

parameter are easy to interpret (for example, units for the parameter are 1/ oC if the covariate is mean 

centered temperature in oC).   
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Covariate effects and available biomass are multiplied to compute an adjusted available 

biomass: 

∑
=′ =

vn

r
rtrd

tvtv eAA 1
,

,,

θ

 

The adjusted available biomass A’
v,t is used instead of the original value Av,t in the closed form 

maximum likelihood estimator for Qv described above. 

 It is possible to use a survey covariate to adjust for differences in relative stock size from year 

to year due to changes in the timing of a survey.  However, this adjustment may be made more 

precisely by letting the model calculate ∆v,t as described above, based on the actual timing data for the 

survey during each year.  

 

Nonlinear abundance indices 

 With nonlinear abundance indices, and following Methot (1990), the survey scaling parameter 

is a function of available biomass: 

  Γ= tvvtv AQQ ,,  

so that: 

  ( ) tvtvvtv AAQI ,,,
Γ

∧

=  

Substituting eγ=Γ+1 gives the equivalent expression:  

  
γe
tvvtv AQI ,, =

∧

 

where γ is a parameter estimated by the model and the survey scaling parameter is no longer time 

dependent.   

In calculations with nonlinear abundance indices, the adjusted available biomass: 

  
γe
tvtv AA ,, =′  

is computed first and used in the closed form maximum likelihood estimator described above to 

calculate the survey scaling parameter.  In cases where survey covariates are also applied to a nonlinear 

index, the adjustment for nonlinearity is carried out first.  In portraying results, it is often useful to 

calculate the scaling parameter for each survey observation, including effects of nonlinearity and 

covariates: 
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  tvtvtv AIQ ,,,
ˆ=  

where the denominator is the raw (unadjusted) available biomass. 

 

Survey Q process errors 

 The AD Model Builder version of the KLAMZ model incorporates a very useful ability to let 

survey scaling parameters change in a tightly controlled fashion from year to year (NEFSC 2002): 

  tveQQ vtv
,

,
ε=  

where the deviations tv,ε  are survey Q process errors constrained to average zero.  Variation in survey 

Q process errors is controlled by the NLL penalty: 

  ∑
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
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2
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where the log scale standard deviation σv is supplied by the user (e.g. see NEFSC 2002). 

 

Recruitment models 

 Recruitment parameters in KLAMZ may be freely estimated or estimated around an internal 

recruitment model, possibly based on spawning biomass.   An internally estimated recruitment model 

may be used to reduce variability in recruitment estimates (often necessary if data are limited), to 

summarize stock-recruit relationships, or to make use of information about recruitment in similar 

stocks.  There are four types of internally estimated recruitment models in KLAMZ: 1) random 

variation around a constant mean; 2) random walk around a constant mean (autocorrelated variation); 

3) random variation around a Beverton-Holt recruitment model; and 4) random variation around a 

Ricker recruitment model. 

 The first step in recruit modeling is to calculate the expected log recruitment level E[ln(Rt)] 

given the recruitment model.   For random variation around a constant mean, the expected log 

recruitment level is the log geometric mean recruitment: 

( )[ ] ( ) NRRE
N

j
jt ∑

=

=
1
lnln    

For a random walk around a constant mean recruitment, the expected log recruitment level is the 

logarithm of recruitment during the previous year: 
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( )[ ] ( )1lnln −= tt RRE  

with no constraint on recruitment during the first year R1.   

For the Beverton-Holt recruitment model, the expected log recruitment level is: 

( )[ ] ( )[ ]ll −− += t
b

t
a

t TeTeRE lnln   

where a=eα and b=eβ, α and β are parameters estimated in the model, Tt is spawning biomass, and { is 

the lag between spawning and recruitment.  Spawner-recruit parameters are estimated as log 

transformed values (eα and eβ) to enhance model stability and ensure the correct sign of values used in 

calculations.  Spawning biomass is: 

  toldtnewt SmRmT +=  

where mnew and mold are maturity parameters for new and old recruits specified by the user.  For the 

Ricker recruitment model, the expected log recruitment level is: 

  ( )[ ] ( )ll
−−

−= tbSa
tt eSRE lnln  

where a=eα and b=eβ, and α and β are parameters estimated in the model.   

Given the expected log recruitment level, log scale residuals for the recruitment model are 

calculated: 

  ( ) ( )[ ]ttt RERr lnln −=  

Assuming that residuals are log normal, the NLL for recruitment residuals is: 

  ( )∑
=
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first
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2

5.0ln σσλ   

where λt is an instance-specific weight usually set equal one.  The additional term ln(σr)  in the NLL is 

necessary because the variance 2
rσ is estimated internally, rather than specified by the user.    

The log scale variance for residuals is calculated using the maximum likelihood estimator: 

     
N

r
N

tj
j

r
first

∑
==2σ  

where N is the number of residuals. For the recruitment model with constant variation around a mean 

value, tfirst=1.  For the random walk recruitment model, tfirst=2. For the Beverton-Holt and Ricker 

models, tfirst={+1 and the recruit model imposes no constraint on variability of recruitment during years 

1 to { (see below).  The biased maximum likelihood estimate for σ2 (with N in the divisor instead of 
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the degrees of freedom) is used because actual degrees of freedom are unknown.  The variance term is 

calculated explicitly because it is used in other calculations. 

 

Constraining the first few recruitments 

 It may be useful to constrain the first { years of recruitments when using either the Beverton-

Holt or Ricker models if the unconstrained estimates for early years are erratic.  In the KLAMZ model, 

this constraint is calculated: 
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where tfirst is the first year for which expected recruitment E(Rl) can be calculated with the spawner-

recruit model.  In effect, recruitments that not included in spawner-recruit calculations are constrained 

towards the first spawner-recruit prediction.  The standard deviation and weights used are the same as 

used in calculating the NLL for the recruitment model. 

 

Prior information about abundance index scaling parameters (Q) 

 A constraint on one or more survey scaling parameters (Qv) may be useful if prior information 

about potential values is available (e.g. NEFSC 2000; NEFSC 2001; NEFSC 2002).  In the Excel 

version, it is easy to program these (and other) constraints in an ad-hoc fashion as they are needed.  In 

the AD Model Builder version, lognormal and beta distributions may be used as prior information in 

estimating Qv for any abundance index.  The user must specify which surveys have prior distributions, 

minimum and maximum legal bounds (qmin and qmax), the arithmetic mean ( )q  and the arithmetic CV 

for the prior the distribution.  

Goodness of fit for Qv values outside the bounds (qmin, qmax) are calculated: 

( )
( ) min

2
min

max
2

max

10000
10000

qQifQq
qQifqQL

vv

vv

≤−
≥−

=  

Goodness of fit for Qv values inside the legal bounds depend on whether the distribution of potential 

values is log normal or follows a beta distribution. 

 

Lognormal case 

Goodness of fit for lognormal Qv values within legal bounds is: 
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where the log scale standard deviation ( )CV+= 1lnϕ  and ( )
2

ln
2ϕτ −= q  is the mean of the 

corresponding log normal distribution. 

 

Beta distribution case 

 The first step in calculation goodness of fit for Qv values with beta distributions is to calculate 

the mean and variance of the corresponding “standardized” beta distribution: 

  
D
qqq min−

=′  

and 

  ( )
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




=′

D
CVqqVar  

where the range of the standardized beta distribution is D=qmax-qmin.  Equating the mean and variance 

to the estimators for the mean and variance for the standardized beta distribution (the “method of 

moments”) gives the simultaneous equations: 

  
ba

aq
+

=′  

and 

  ( )
( ) )1(

' 2 +++
=

baba
abqVar  

where a and b are parameters of the standardized beta distribution.11  Solving the simultaneous 

equations gives: 

  ( ) ( ) ( )[ ]
( )qVar

qqqVarqb
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and: 
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11 If x has a standardized beta distribution with parameters a and b, then the probability of x is ( ) ( )
( )ba

xxxP
ba

,
1 11

Γ
−

=
−−
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Goodness of fit for beta Qv values within legal bounds was calculated with the NLL: 

 ( ) ( ) ( ) )'1ln(1'ln1 vv QbQaL −−+−=  

where ( )minqQQQ vvv −=′ is the standardized value of the survey scaling parameter Qv. 

 

Surplus production modeling 

Surplus production models can be fit internally to biomass and surplus production estimates in 

the model (Jacobson et al. 2002).  Models fit internally can be used to constrain estimates of biomass 

and recruitment, to summarize model estimates in terms of surplus production parameters, or as a 

source of information in tuning the model.  The NLL for goodness of fit assumes normally distributed 

process errors in the surplus production process: 

  ∑
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where Np was the number of surplus production estimates (number of years less one), tP~  is a predicted 

value from the surplus production curve, Pt is the assessment model estimate, and the standard 

deviation σ  is supplied by the user based, for example, on preliminary variances for surplus 

production estimates.12  Either the symmetrical Schaefer (1957) or asymmetric Fox (1970) surplus 

production curve may be used to calculate tP~ (Quinn and Deriso 1999).   

It may be important to use a surplus production curve that is compatible with assumptions 

about the underlying spawner-recruit relationship.  More research is required, but the asymmetric 

shape of the Fox surplus production curve appears reasonably compatible with the assumption that 

recruitment follows a Beverton-Holt spawner-recruit curve (Mohn and Black 1998).  In contrast, the 

symmetric Schaefer surplus production model appears reasonably compatible with a Ricker spawner-

recruit curve. 

The Schaefer model has two log transformed parameters that are estimated in KLAMZ: 

  2~
ttt BeBeP βα −=  

                                                 
12 Variances in NLL for surplus production-biomass models are a subject of ongoing research.  The advantage in assuming 
normal errors is that negative production values (which occur in many stocks, e.g. Jacobson et al. 2001) are accommodated.  
In addition, production models can be fit easily by linear regression of Pt on Bt and Bt

2 with no intercept term.  However, 
variance of production estimate residuals increases with predicted surplus production.  Therefore, the current approach to 
fitting production curves in KLAMZ, while simple and useful, is not completely satisfactory. 
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The Fox model also has two log transformed parameters: 
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
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See Quinn and Deriso (1999) for formulas used to calculate reference points (FMSY, BMSY, MSY, and K) 

for both surplus production models. 
 

Catch/biomass 

Forward simulation models like KLAMZ may estimate absurdly high fishing mortality rates.  The 

likelihood constrain used to prevent this potential problem was calculated: 

  ∑
=

=
N

t
tdL

0

25.0  

where: 

  
( )

otherwise
BCifBC

d tt
t 0

κκ >−
=  

with the threshold value κ normally set by the user to about 0.95.  Values for κ can be linked to 

maximum F values using the modified catch equation described above.  For example, to use a 

maximum fishing mortality rate of about F≈4 with M=0.2 and G=0.1 (maximum X = 0.1 - 4.0 - 0.2 = -

4.1), set κ ≈ -F/X(1-eX) = 4 / 4.1 (1-e-4.1)=0.96. 

 

Uncertainty 

 

The AD Model Builder version of the KLAMZ model automatically calculates variances for 

parameters and many quantities of interest by the delta method using AD Model Builder libraries with 

exact derivatives.  If the objective function is the log of a proper posterior distribution, then Markov 

Chain Monte Carlo (MCMC) techniques implemented in AD Model Builder libraries can be used 

estimate posterior distributions representing uncertainty in the same parameters and quantities.   
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Bootstrapping 

A FORTRAN program called BootADM can be used to bootstrap survey data in the KLAMZ 

model.  BootADM extracts the standardized residuals: 
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jvIjvI

r
,

,

,,ln

σ












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=  

using log scale standard deviations (σv,j), and predicted values ( )jvI ,
ˆ  for all active survey observations 

in a “base case”  KLAMZ model run.  The standardized residuals are resampled from a single pool 

with replacement to form new sets of bootstrapped survey “data”: 

  jvr
jvjv

x eII .
,,

ˆ σ=  

where r is a resampled residual for the xth bootstrap iteration.   

BootADM builds new KLAMZ data files and runs the KLAMZ model repetitively, collecting 

the bootstrapped parameter and other estimates at each iteration and writing them to a comma 

separated text file that can be processed in Excel to calculate variances, confidence intervals, bias 

estimates, etc. (Efron 1982). 

 

Projections 

 

 Stochastic projections can be carried out using another FORTRAN program called 

SPROJDDF, based on bootstrap output from BootADM.  Basically, bootstrap estimates of biomass, 

recruitment, spawning biomass, natural and fishing mortality during the terminal years are used with 

recruit model parameters from each bootstrap run to start and carryout projections.13  Given a user-

specified level of catch or fishing mortality, the delay-difference equation is used to project stock 

status for a user-specified number of years.  Recruitment during each projected year is based on 

simulated spawning biomass, log normal random numbers, and spawner-recruit parameters (including 

the residual variance) estimated in the bootstrap run.  This approach is similar to carrying out 

projections based on parameters and state variables sampled from a posterior distribution for the 

                                                 
13 At present, only Beverton-Holt recruitment calculations are available in SPROJDDF. 
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basecase model fit.  It differs from most current approaches because the spawner-recruit parameters 

vary from projection to projection. 
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