D. PRODUCTION MODELING

PURPOSE

The purpose of thisreport isto summarize the
working papers and discussions of the
Methods Working Group concerning the
teems of reference related to surplus
production models. Each major topic is
introduced and accompanied by a brief
description of the methodology and one or
more example applications. The various
approaches are intended to be illustrative,
rather than definitive, and should not be
construed asrevisionsto existing assessments
or biological referencepoints. Thecomments
of the SARC on the various approaches are
summarized at the end of this section.

INTRODUCTION

Surplus production models play a central role
in the management of fisheries under the
Sustainable Fisheries Act (SFA) of 1996
(USDC 1997). The SFA provides explicit
guidance on the definition of maximum
sustainable yield, fishing mortality and
biomass targets and thresholds, and time
frames for rebuilding of overfished stocks.
This guidance has challenged stock
assessment scientists to develop estimates of
such parameters for a broad range of species.
In this report we focus on the challenges
relevant to assessments of fishery resourcesin
the northeast region of the United States.
Fishery resourcesinthenortheast benefit from
along time seriesof synoptic survey data. For
over 30 years the Northeast Fisheries Science
Center has conducted two annual surveys of
finfish populations. Since 1992 surveys have
been conducted in the winter, and specialized
surveys for shellfish are al'so conducted.

In spite of this wealth of data, estimation of
parameters in surplus production models is
difficult for many stocks. The difficulties
stem from several sources. First, many of the
stockshavebeen heavily fished for almost 100
years. Thus any simplifying assumptions
about the state of resource when the surveys
began are tenuous. Second, the fisheries are
prosecuted by a wide range of fleets and gear
types with varying levels of selectivity. Many
of these fisheries generate substantial
guantities of discards, which in many
instances are poorly estimated. Third, many
stocks have been subject to intense fishing
mortality, first by foreign fleets before 200
mile coastal limitswereimposed, and then by
overcapitalized domestic fleets. Rebuilding
of fish stocks, to the extent it has occurred,
has been limited to the past 5-10 years. In
terms of surplus production models, these
conditions imply that one cannot assume that
theinitial population sizein near the carrying
capacity. Heterogeneous fisheries imply that
not all removals are known. Many stocks
have experienced consistent declines in
abundance (the “one-way trip”) such that
information about density dependent
processesisdifficult to discern. In aggregate,
these conditionscreate an ironic circumstance
in which awealth of age-specific survey and
catch data contains little information about
density-dependent processes.

Nonetheless, models of surplus production
have been devel oped for several speciesinthe
Northeast and the resulting parameters have
been codified into control rules for fisheries
management. Most of the mgjor fish stocks
are assessed using age-structured models,
especially Virtual Population Analyses
“tuned” to survey data. The tuned-VPAs
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create afurther difficulty, in that the vector of
derived fishing mortality rate (F) must be
trandated into an average F comparable to
estimates derived from surplus production
models.  This melding of two mode
constructsislikely to be atransient condition
as more synthetic models are developed.
However in the short run it is important that
current assessment results be compared to
existing definitions of overfishing, however
they have been defined.

TheM ethods Subcommittee of the SARC was
asked to provide guidance on the use of
surplus production models. Thespecificterms
of reference are listed below:

TERMS OF REFERENCE

(A) Evaluatetheuse of production models
in providing estimates of biomass and yield
targets and thresholds consistent with
provisions of SFA

(B) Provide guidance on the use and
limitations of production model results for
establishing management goals

(C) Evaluate various types of production
models(age/stage structured, non-equilibrium,
etc.) and provide guidance on the use of model
types in differing circumstances of data
availability, exploitation history and length of
time series.

(D) Compareestimatesof MSY, Fmsy and
Bmsy from production models with those
based on catch-at-age model resultsasabasis
for understanding biases, stability and
precision of such estimated parameters.

The Methods Subcommittee attempted to
addressthesetopi csby examining anumber of

case studies. The approaches taken by the
group can be classified into the following:

1) Diagnostic measures—is there evidence to
support the underlying processes of density
dependence?

2) Commensurate quantities—can we develop
internally consistent measures of biomassand
fishing mortality from age-structured and
production models?

3) Advanced estimation procedures—are there
more advanced estimation procedures which
improve the accuracy and precision of
biological reference points?

4) ldentification of promising research
areas—especially those related to integrated
assessment approaches.

GRAPHICAL AND DIAGNOSTIC
METHODS

Design Sufficiency

One of the major difficulties for Northeast
fisheries is the determination of biomass
targets under SFA. As noted above, high
exploitation for many species occurred prior
to the primary time series of fishery
independent data. This can mean that the
biomass that supports MSY has not been
observed in the extant data. Restricting
inferences of Bmsy to what has been observed
may be myopic; extending estimates beyond
the range of the data can be tenuous. The
realized time series of catches and survey
values can be considered as an outcome of an
unplanned experiment. The same properties
that constrain inferences in experimental
design are aso important for model based
estimation. In particular, the number of
observations that occur at each level of
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treatment factors is a critical factor in
experimental design. Infisheriestherelative
proportion of observations at high and low
levels of population level are important. Let
population density be proportional to relative
survey biomass and exploitation be
proportional to catch divided by survey
biomass. The relative frequency of
observationineach cell providesanindication
of the ability to estimate population
parameters. A hypothetical example:

Population Size

Relative Harvest Rate Low High
Low 0.1 0.2
High 0.5 0.2

Note that most of the observationsareat high

harvest rates and low population size. An
even more disturbing pattern will be evident
for aheavily exploited stock.

Population Size

Relative Harvest Rate Low Medium High
Low 0.05 (5) 0 0
Medium 0.25 (4) 0.1 (1) 0
High 04 (3) 0.2 (2 0

The first number indicates the fraction of
observations at each population state. The
second number in parentheses indicates the
order of observation. Hence the population
may never have been monitored at high levels
of abundance and the sequence of
“treatments” hasclearly not been randomized.
In an experimental design, such conditions
would merit at least a split plot design. In
fisheries the analytical solution is not clear,
but the warning message is the same.
Analytical sophistication may not besufficient

to overcome fundamental problems of
inference.

The Envelope Plot

To gain some insight into possible biomass
targets it is useful to compute historical
measures of abundance under a range of
assumptions. For example, a catch series C,
can be used to create a range of possible
popul ation biomasses B, by noting that B, =C,
/U where U isexploitation rate. If we assume
that the catches are the redlization of a
consistently low exploitation rate then By, 4,
= C, /IU,,,. Conversely, if exploitation rates
have been consistently high then an ultimate
lower bound on exploitable biomassissimply
the catch series, i.e., By,,, = C. If atime
series of survey dataare available, swept area
biomass estimates can be computed for
varying levels of catchability or gear
efficiency. Other model-based estimates of
abundance, say from a VPA, can be
superimposed on the same graph. Findly,
estimates of biomass per recruit from standard
YPR analyses can be multiplied by average
recruitment to generate an estimate of
expected population biomass. The resulting
series of population estimates can be
considered an envel ope of feasible population
sizes in which surplus production-based
estimates of Bmsy should at least have some
consistency. An example plot for summer
flounder is depicted in Fig. 1 in which the
high estimates of population size are based on
an exploitation rate ~0.15.

Model Behavior Plots
The standard surplus production model can be
written as a difference equation

r
Bt+l = Bt + rBt _K Bt2 _Ct (1)
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If survey index |, is proportional to B, such
that 1,= q B, then Eqg. 1 can be written as

It+1 :It +r|t -

r
— 17 -
K G

Rearranging terms and dividing though by I,

t+4 't

=+r] —L' —q& (3)
| gkt
If density dependence is evident in a
population, thentherateof increaseinrelative
population size should increase at low
population levels and decrease at high
population densities. A simple test of this
concept isdepicted in Fig. 2inwhich relative
population abundance at time t+1 is plotted
against relative harvest rate for summer
flounder. Thesizeof thecircleisproportiona
to the magnitude of the quantity (I,,, - 1) / 1;;
open circles indicate negative values, filled
circles represent positive values. Each point
is labeled with the year of observation and
time trend is denoted by the line. Figure 2
demonstratesthe ongoing recovery of summer
flounder as relative harvest rates appear to be
decreasing. More importantly, however, the
plot suggests that the rate of increase (i.e.,
circle diameter) at high density and low
harvest rate is comparable to those values
observed at low densities and high harvest
rates. Fromthis plot at least, there does not
appear to be any evidence of densty
dependent reduction in biomassincrease. The
observed trgjectory of summer flounder may
in fact reflect the transient effects of several
yearclasses surviving for more than a few
yearsinthefishery. Such evidencesuggestsa
priori that the K parameter (and hence B,)
may be difficult to estimate for summer
flounder.

When Are Multiple Indices Useful ?

It is often assumed that multiple indices will
improve model fits by using more
information. Thisistrue however, only if the
indicesare measuring the sameattribute of the
population in a given spatial domain. If so,
information on popul ation abundance will be
improved by having multiple measures. In
most assessment models, conflicting data
trends are accommodated by “splitting the
difference”. *“Splitting the difference” may
not be useful if the conflicting observations
signal changes in the underlying process (e.g.
shifts among spatial units), temporal changes
in availability, or changes in the underlying
harvest process. As an example of the latter
process, consider amanagement measure that
changes the seasonality of harvesting. The
relationship between catch and index values
will then change over time but the model will
accommodate this change as an error term to
be minimized.

A simpleplot of the spring and fall indicesfor
summer flounder (Fig. 3) suggeststhat thefall
index has been increasing more rapidly than
the spring survey since about 1990. A plot of
the spring survey in the subsequent spring
(t+1) against the fall index in year t suggests
that the slope is decreasing. This figure is
consistent with the hypothesis that an
increasing fraction of the landings are
occurring in the winter between the fall and
spring  surveys. The simple surplus
production model with multipleindicescannot
accommodate this change since each index is
assumed to be representative of the population
biomass. Moreover, catch is incorporated as
total annual catch rather than temporally
disaggregated values.
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Response Surface Plots: Graphical Measures
of Uncertainty

The sampling covariance between r and K
(and hence F,, and B,y) in surplus
production has been well studied in the
literature. The nonlinear negative association
can be particularly severe if the model does
not fit particularly well. In these
circumstances, both of the primary estimates
of interest to management may be useless.
Regardless of the degree of fit, it is clear that
traditional measures of precision, based on
asymptotic properties, are likely to
underestimate the true variation. Bootstrap
procedures address this issue in part and
should be acomponent of any serious attempt
to estimatepopul ation parameters. Additional
insights can be gained by examining the loss
function in the vicinity of the solution and by
applying confidenceintervalsproceduresmore
appropriate for nonlinear models.

To begin this examination, it is necessary to
reparameterize the surplus production model
in terms of F,, and B,y  This is
accomplished by substituting the functional
relationships r=2 F., and K=2 B, into
Equation 2.

E
I = @+ 2Ryl — e l - 4
( sv) B, G @

SY

Eg. 4 permitsonetoimmediately computethe
primary parameters of interest, an advantage
insomestatistical packages. Comparisons of
parameter estimates obtained by Eq. 2 and 4
were identical (thereby providing empirical
evidence of the invariance principle of
maximum likelihood estimators!).

In contrast to standard Wald-type estimators
of confidenceintervals, Cook-Weisberg (C-
W) method (Cook and Weisberg 1990) is
specifically designed for nonlinear models.
The C-W method is conceptually similar to
profile likelihood methods since the model is
re-estimated for each alternativefixed val ue of
the variable of interest. For example, in Eq.
4, the confidence interval for Fmsy is
estimated by recomputing the best estimates
of Bmsy and q for each fixed value of Fmsy in
thevicinity of thesolution. Theresidual sum
of squaresisasymptotically distributed asat-
statistic; in a profile likelihood approach the
likelihood function would have a ¥
distribution.

Approximate confidence regions for each
parameter can be simply examined by
evaluating the RSS in the vicinity of the
solution. The C-W method was not applied to
the confidence region; instead, the
“significancelevel” wasapproximated with an
F statistic, following the methods in Draper
and Smith (1966) (See Fig 4a).

Results of the modified surplus production
model fit are summarized in Table 2. The
spring and fall survey indices were simply
averaged for this heuristic example. For this
model configuration, the estimated value of
Frsy = 0.4and the B, level is59,268 mt. Itis
worth repeating —these values are used for
illustration only.

Contour plots of the loss function for al
possible pairings of F,g, By, and q (not
shown) demonstrated a wide range of values
for eventhe nominal significancelevels. One
example (Fig. 4b) of the B, vsF,, contour
plot may be of general utility for development
of uncertainty in control rules.
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Funnel Plots—Evaluating the Value of
Additional Data

As many authors have noted, long time series
of catch data are not necessarily informative
about underlying population dynamics in
surplus production models. The surplus
production model does not exhibit the
convergence properties of VPAs and
additional datamay not improvethe precision
of estimates. On the contrary, additional data,
especidly if it is informative, may markedly
alter one's perception of the population’s
dynamics. In principle, a data set derived
from apopulation following alogistic growth
model and subject to variations in harvest
rates at different stock levels, should be
sufficient to recover the underlying
parameters. As the length of the time series
increases, the estimates should converge to
stable estimates of these parameters.
Moreover, these parameters should be
recoverable from series of any length and any
starting point.

These concepts were merged to estimate a set
of parameter estimates corresponding the
enumeration of all possible series of length s
from an initial series of length n. In more
mathematical terms, let ©4 represent a vector
of parameters corresponding to the j-th series
on length s. For example the series can be
enumerated as{j=1; t=1,2, ...s}, {j=2; t=2, 3,
.St} L {j=k; t=k, k+1, ...n}. Thiscan be
donefor all seriesof lengthsupton. The
corresponding estimates can be displayed asa
function of the number of contiguouspointsin
the data set. These can be called funnel plots
based on an expected shape. Serieswith fewer
elements might be expected to exhibit greater
variation, with a narrower range of estimates
at the number of elements approaches the
original number of observations. Anexample
set of funnel plots for summer flounder is
depictedinFig. 5. Theleft column showsthe

set of estimates circumscribed by a convex
hull. Theright column showsabox plot of the
estimates with a Lowess smooth through the
datapoints. The plots suggest that the surplus
production model parameters are not stable
since removal of a small number of data
points induces wide variations in estimates.
Theapparent trend inincreasingvaluesof F_,
and g is also undesirable. Similar concerns
werenoted by Terceiro (2001) who conducted
a retrospective analysis. The funnel plot
simply enumerates all possible retrospective
patterns and reinforces Terceiro’s concerns.
As the number of data points in the series
decreased, the number of estimation failures
(i.e, no convergence) increased. For the
shortest length series (m=13), over 35% of the
runs failed to converge. Failure rates did not
fall below 30% until at least 19 points were
included in the time series.

Collectively, the graphical methods proposed
herein should be viewed as complementary to
existing approaches to derivation of suitable
surplus production models.  Traditional
residual analysesareuseful, but many features
may not be discernible if the model fitting
process masks changes in the underlying
process. While it may not be possible to
develop a formal proof, it seems logica to
assert that the problems of model mis
specification arelikely to be more pronounced
in simple models. Therefore, considerable
caution should be applied when attempting to
derivebiological reference pointsfromsurplus
production models.

Use of Smoothed Indices in Surplus
Production Models

M odern smoothing methods are an important
tool for stock assessment but in the context of
modeling methods that include catch,
considerable caution is necessary. A simple

250

SAW 33 Consensus Summary


lgarner


example will suffice to illustrate the
difficultiesof interpretation. Asbefore, et B,
represent the popul ation biomass at timet and
B’, represent a simple moving average of B,
centered on time t. For a simple 3 point
moving average B’, =(B,,; + B, + B,))/3. If P,
denotes the surplus production at timet then

P,=B.,-B,+3C,. (5
If B, isreplaced by its moving average then

P =(Bu,*+ By +BY)3- (B, + B +B)/3+ 8 C

or
P =(Bu,-B.)I3+ 6 C, (6)

Thus the production in year t is written as
function of catch in the current year, biomass
in the previous year and biomasstwo yearsin
the future. As the duration of the moving
average period increases, the e discounting of
the termina points would become even
smaller such that ,,—>C..

Without additional smoothing of the catch
series, the mechanisms that might make the
above equation meaningful are unclear. If a
more complicated n-point smoothing
algorithm was applied, then the smoothed
estimate of production in year t would be
represented as a linear combination of n+1
biomass levels. Once again, it may be
difficult to interpret such equations.

RELATION BETWEEN MSY AND
AVERAGE CATCH

The subcommittee al so addressed theissue of
theexpected rel ationship between estimates of
MSY and average catch. Many have noted

that MSY is often close to estimates of
average catch. It can be shown that a lower
bound on MSY can be written as

MSY = (KP + C)o—'
01+ r O

where P is the average fraction of the

population present and C is the average
catch. Unfortunately, it is not possible to
develop an upper bound on MSY from the
catch series. Thus, the potential for huge
MSY values persists as long as there is no
direct evidence of density dependence in the
time series.

BIOMASSWEIGHTED F-EFFECTS OF
TRANSIENT CONDITIONS

Theory
Surplus production models (SPM) treat

biomass as an undifferentiated pool in which
each unit of biomass has an equal capacity for
reproduction, growth and mortality. In
contrast, age-structured models (ASM) admit
differences in the properties with respect to
age. Stochastic variations in recruitment and
their subsequent effects on biomass
production are subsumed into estimatesof rin
SPM. The transient effects of recruitment
complicate the trandlation of vector-based Fs
in ASM to scalar-based Fsin SPM.

Onesimplification that identifiesthe nature of
the problem isto note that prediction of yield
from an undifferentiated biomass pool is
equivalent to that in the age-structured model.
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Under the surplus production model

Y=FgyBor. Under the age-structured

A JR—
model Y = Z F B . Combining these
1=

equationsfor yield and noting that B, = 2B
leads to

=1

Thisimpliesthat the biomassweighted Ffrom
an ASM is equivalent to the pooled F from a
surplus production model (SPM).

It is important to note however, that the
variationsin age-specific biomassareinduced
by variations in the numbers of recruits
associated with each cohort and their fishing
history. Both factors will cause deviations
from the weighting factors associated with
constant recruitment and fishing history. A
hypothetical age structure, based on the
contemporary set of age specific Fs and a
constant recruitment can be used to compare
the magnitude of deviationsin the current age
structure.

Let the vector E,q,(t) represent the estimated
age-specific Fsin year t from an ASM. The
expected number at age that would obtain
under E,,(t) and constant recruitment R can
be estimated as

i-1
=) Fasu jtM

Negoi =Re ™

The expected equilibrium biomass at age can

be estimated as Bzgy =NW  where W is
the average weight at age |I. The
corresponding biomass-weighted F associated
with equilibrium recruitment and F,q, IS

If we denote the observed age-specific
biomass estimates a as the difference between
the biomass-weighted F and the equilibrium F
i.e., Fay - Feq Can now be examined in terms
of its departure from equilibrium conditions.
Not that the differencesin F are independent
of the absolute magnitude of recruitment R
and depend only on the vector F and average
weights. Thedifferencesbetween F;,, and Fc
can be decomposed into deviations associated
with non- equilibrium conditions. For the
vector difference Bqgs - Be , positive values
are indicative of either lower historical F or
higher recruitment; negative valuesreflect the
opposite.

Application

To illustrate the technique, the above
eguations were applied to an earlier ADAPT
version of the Gulf of Maine cod. Ages 1 to
7+ were used in the VPA. The equilibrium
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estimate of population biomass in the plus
group was estimated by extending the
population age vector out to 25 years, and
retaining the same age weight as employed in
the VPA. The observed biomass weighted F
from the VPA (i.e, Fngy) = 0.2113 whereas
the biomass weighted F under equilibrium
conditions was 0.2296. Comparison of the
observed and expected biomasses at age
suggest that the largest disparity for age 2
(1998 year class) accounts for about 80% of
the total deviation.

Discussion

The vector-based approach may be useful for
characterizing the transient effects of non-
equilibrium age structure on the derived
biomass-weighted F. The prediction of an
equilibrium biomass structure that would
obtain under the observed F vector in the
terminal year permits an analysis of how far
the current age structure is from equilibrium.
The total difference in average F can be
computed and the age-specific contributions
to the difference can be estimated.

Asadiscussion point, it could be argued that
Feo is a better “point of entry “ for fishery
control rules based on surplus production
models. By extension, it may also be argued
that atotal biomass estimate, derived as B'¢,
.1, might be appropriate for the biomass axis
of the control rule. In either case, the need to
trandate F's derived from age structured
models into their surplus production
equivalents(e.g., seeApplegateet al. 1998), is
a short-term problem that should be resolved
as better estimates of biological reference
points become available.

EXTERNAL SURPLUSPRODUCTION
MODELS

M ethodology
Annua surplus production in an unfished

stock isdefined as P=B,,,-B, (Ricker 1975).
When fishing mortality is considered, surplus
production is defined as

R=B,-B+3G @
where & is a correction factor that adjusts
biomass at the beginning of year t+1 for catch
during year t. The factor & accounts for
surplus-production by fish takenin thefishery

during year t so that the sum B,; +0Cisthe
hypothetical biomass that would have existed
inyear t+1 if there had been no fishing during
year t (MacCall 1978). Weassumed 6 =1
for al stocksinthisanalysis. Thisassumption
isvalid when the instantaneous rate of natural
mortality (M) and average instantaneous

somatic growth rate (é) balance (i.e. where

M- G is approximately zero for ages taken in
the fishery).

Surplus production as defined in Eg. 7 can be
estimated for any model that generates atime
seriesof biomassestimates. Such estimatesof
production are useful in characterizing the
response of populations to exploitation and
investigating temporal trends. It is aso
possible to examine the degree to which
productivity estimates agree with predictions
of surplus productions models. This is
accomplished by fitting a quadratic function
(Schaefer 1957) to the estimated production
estimates such that substituting biomass
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estimates ( B ) from the“best available” stock
assessment model for biomass (B,) into Eq.
(7), gives:

ﬁ?:3+1_3 +5Q :£ +h’?\?2 (8)

where R isan “observed” estimate of P, used
as the best available “data’ in externally
estimated surplus production models.  The
fitted model of estimate surplus production
can be written as

P =aR +bB’ (9)

Thus P isthe estimate of surplus production
based on the zero intercept quadratic model
that relies on biomass estimates derived from

another model. Estimates of the @ and b
parameters can be used to derive estimates of

the intrinsic rate of increase (f:a) and

carrying capacity (K=-a/b). Other
standard al egebraic deductions of Schaefer’s
model also follow such at By,5,= K/2 (where
Bysy IS the equilibrium biomass for MSY),
MSY = aK/4 and F,5,= &/2.

The use of the expression “external” reflects
the fact that estimates of a and b are not
incorporated into the original estimates of B,.
The external approach is a special casein a
general family of internaly estimated
“composite” non-equilibrium surplus
production models (Fournier and Warburton
1989), that also includes conventional all
measurement error such as ASPIC (Prager
1994) as another special case. Additional

details on the estimation and application of
external estimates of surplus production
parameters may befoundin Jacobsonetadl. (in
press). The following examples rely heavily
on the methodol ogy presented in Jacobson et al.

As noted earlier, F,s, and B,,s, are often
correlated and the b parameter in Eq. 9 may
be difficult to estimate for heavily fished
stocks with few data at high biomass levels.
This circumstance implies that F,g IS
estimable but B,,5, isnot. To test for this
circumstance we fit the model with and
without the quadratic term, and used t-tests
(p=0.05) to determine which model was
“better” for the available data. One-sided t-
testswere used because the expected val ues of
b is less than zero in Schaefer’s model (EqQ.
4).

The statistical model we used to fit external
production models with independent errors
was:

~»
~Ul

t& ©)

where €, is an independent statistical error
term that includes both measurement and
process errors. When statistical errors were
assumed to be autocorrel ated, we used:

N _ _ MaxLag
R=R+y,=R+e&+ ZAt—jEt—j
= (6)
where the moving average parameters| T (-

1, 1) were for lags of 1-3 years, the smple

residual ¥ =P, —Pwasautocorrelated, and the
timeseriesresidualsg, wereindependent. The
moving average approach is easy to use and
effective but it requires estimation of
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additiona moving average parametersl ;
(Schnute 1985). In theory, the independent
errors prior to the first year (g,,) should be
estimated aswell. For ssimplicity, weassumed
that all independent errors prior to the first
year were zero, and we restricted our models
tolags £ 3 years.

We used t-tests for parameter estimates to
help us determine how many moving average
parameterswererequired inthe best model for
aparticular data set (Schnute 1985). Residual
patternswere another factor that considered in
making these decisions.

Objective functions used in external surplus
production model parameter estimation were
weighted sum of sgquares proportional to one-

half thenegativeloglikelihood L(P|6) of the

observed annual surplusproduction data( P),
giventhesurplus-production model parameter

estimates Qz(é,b,)ﬁ_l,---). We assumed that
independent errors (€, in modeling surplus
production were normally distributed to
accommodate the potential for yearswith zero
and negativesurplusproduction. Modelswith
independent statistical errors can be fit by
guadraticlinear regression (forced throughthe
origin) with P as the dependent variable, B
as the independent variable and weights, if
required. However, we used non-linear
regression (AD Model Builder software, Otter
Research Ltd.) to fit externa surplus
production model swith both uncorrel ated and
correlated errors.

The objective function with uncorrelated
errors was:

" a NP -P
L(P|9)=O.5Z% 7)

wherethestandard errorss, werefrominverse
variance weighting factors ( w=1/s7?)
supplied as input data. In the simple case of
constant variance, the objectivefunctionisthe
same as an unweighted sum of squares.
Following Schnute (1985), the objective
function with correlated errors was:

L(P|6) = 0.52%5 (8)

We used a wide range of methods to
characterize uncertainty and correlation in
estimates of F,,s, and B,,s, and other model
estimates. In particular, we used the delta
method based on asymptotic variances for
parameters (i.e. from the Hessian matrix in
non-linear regression), empirical bootstrap
(i.e. origina weighted residualse /s, sampled
with replacement, with appropriate
calculations for autocorrelated errors),
likelihood profiles, and numerical Markov
Chain Monte Carlo (MCMC) techniques.
Preliminary runs for some stocks indicated
that the product R,s~FysBusy Might be
estimated robustly because of negative
correlation between the individua terms
(higher estimates of F,,s, tend to be offset in
the product by lower estimates of B,,s,) SO we
estimated the variance of the product using all
methods.
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Ininterpreting bootstrap results, itisimportant
to remember that the simulation analyses
assume atrue underlying model with all of the
parametersat their estimated value. Bootstrap
calculations give confidence intervals and
variance estimates that can be compared to
results using other techniques. Bivariate
distributions for F,,5, and B,,s, estimates from
bootstrap runs were plotted in three
dimensions to illustrate the correlation
between estimates of F,,5, and By,

Summary and Discussion

Externally estimated surplus production
models are useful because they summarize
assessment model results in terms of surplus
production, use all of the information in the
original stock assessment model, are ssimple
enough to be carried out in a spreadshest,
depict surplus production-biomass
relationships in a way that is easy to
understand, and often provide useable
estimates of MSY parameters. Moreover,
they help assessment scientists avoid
problems relating fishing mortality estimates
from onemodel (e.g. VPA) to MSY reference
point calculations from a second model (e.g.
ASPIC). Hilborn (2001) and Jacobson et al.
(in press) recommend carrying out external
surplusproduction cal culationsroutingly, even
if results are not used to estimate MSY
reference points.

In this paper, wefit afamily of nested surplus
production models with a linear term only,
linear and quadratic terms, and with
uncorrelated and correl ated statistical errorsto

accommodate serial correlationinresiduals, a
common problem in surplus production
modeling. The linear model is appropriate
and useful when the dynamic range of the data
is limited to low biomass levels. The nested
model approach could be easily extended to
asymmetric surplus production models with
an additional parameter (e.g. Pela and
Tomlinson 1969). However, data were not
sufficient to estimate asymmetric surplus
production curves for the stocks in this
anaysis.

Long time series are most useful in fitting
surplus production models so biomass
estimates from stock assessment modelswere
supplemented in several cases by rescaling
and smoothing bottom trawl survey data for
early years. Sensitivity analyses were used to
assess affects of combing data from different
SOurces.

Surplus production was negative in 0% to
12% of years, depending on the stock. The
best external surplus production models and
MSY parameter estimates are summarized
below. Models with moving average error
terms and weighting were required for most
stocks. All stocks showed P/B ratios
declining with biomass suggesting density
dependent production relationships. However,
linear surplus production (rather than Schaefer
surplus production) models were used for sea
scallop in the Mid-Atlantic Bight and white
hake dueto lack of dynamic range in biomass
levels.
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Stock Fusy Busy

Data/M odel

Comment

Striped Bass 0.18 69,437

1982-2000 from
VPA; 1965-1981
from scaled survey,
catch and other data;
Schaefer model; No
weights; Independent
errors

Summer 0.40 42,398 1982-2000 from Implausible, Fy,s,
flounder VPA; 1974-1981 probably too high, By,
from scaled survey probably too low due to
data; Schaefer model; | apparent low production
Downweight datafor | inmid-1970’s, possibly
1978-1981; MA-1 stemming from lack of
errors recreational catch data
Redfish 0.087 | 135,241 1934-1999 from
preliminary stock
assessment; Schaefer
model; Downweight
datafor 1934-1962;
MA-3 errors
White hake 0.23 Not 1989-1999 from a By, NOt estimable dueto
estimate preliminary (and limited dataand linear

d problematic!) VPA;
Linear production
model; No weights;

production model; F,,s,
possibly biased low; Data
from problematic VPA

Independent errors biomass estimates
Gulf of Maine | 0.44 22,988 | 1982-1999 from VPA Implausible, Fy,s,
Cod (1963-1981 excluded | probably too high, By,

dueto lack of fit);
Scaefer model; No
weights, MA-2 errors

probably too low, possibly
due to limited dynamic
range and imprecise
estimates

The F,,s, estimate (0.23 y*) from the external
linear surplus production model for white
hake was based on a problematic VPA.
However, the estimate seems plausible (i.e.
approximately the same as the assumed
natural mortality M=0.2 y* and an estimate
Fusy =0.25 y* from Applegate et al. 1998).
Theexternal estimate may berobust if average

surplus production and average biomass were
measured accurately by the VPA.

External MSY parameter estimates were
implausible for summer flounder with
estimates of B, probably too low and
estimates of F,s, probably. Problems with
summer flounder stem from apparently low
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surplus production during the mid-1970's.
Low surplus production, in the context of a
surplus production model, indicates that the
stock is at carrying capacity. However,
summer flounder supported substantial
catches for many years prior to the beginning
of the mid-1970's. For example, survey age
composition and survey abundance data (not
included in the stock assessment or external
surplus production model) indicate that
summer flounder fishing mortality was high
prior to the outset of the time series used in
production modeling. We hypothesize that
apparent low surplusproductionin early years
for summer flounder may have been due to
missing recreational catch data.

The best externa estimate of F,,g, for striped
bass was lower and the estimate of B,,5, was
higher than proxy valuesused in managing the
striped bass fishery. Results for summer
flounder were implausible but the best
external estimate of F,,s, was higher and the
estimate of B,,5, was lower than proxy values
used in managing the fishery. The best
externa estimate of Fyg for redfish was
similar to apreliminary estimatefrom ASPIC,
but estimates of B,,5, were different. The best
externa estimate of F,,, for white hake was
similar to an estimate in Applegate et al.
(2998) from ASPIC, but therewasno external
estimate of Byg. The externa estimate of
Fusy @d B,,s, for Georges Bank sea scallop,

and the estimate of F,,s, for the Mid-Atlantic
stock, were similar to proxies used in
managing the fishery. External results for
Gulf of Maine cod were similar to estimates
from a preliminary ASPIC run.

Busy ISmoredifficult to estimate than F,,g, for
most of the stocksinthisanalysis. In practical
terms, B,,s, may be inestimable currently for
somestocks(e.g. white hake) regardless of the
modeling approach due to lack of contrast in
the available data.

We estimated uncertainty in estimates by
bootstrapping, likelihood profiles, the delta
method and Markov Chain Monte Carlo
techniques. Bootstrapping usually gave the
widest confidence intervals with confidence
intervals from other methods that were
similar. For most stocks, F,,s, Was estimated
more precisely than B,,s, because of the
relatively large number of data pointsfor low
biomass levels and relatively small or lack of
data points at high biomass levels. Statistical
distributions measuring uncertainty weremore
symmetrical for F,,s, thanfor B,,5,. Therewas
usually a strong negative correlation between
Fusy @80d By,s, estimates. The distribution of
bootstrap F,,s, and B,,s, estimates for striped
bass (see below) is typica and shows the
relative uncertainty in both parametersaswell
astheir correlation.
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Estimates of product MSY = F,,s, By, Were
more usually more precise than estimates of
Bus- Thus, the product may be useful in
choosing a proxy vaue for B, that
correspondsto aparticular proxy for Fy,s,. For
example, in striped bass, the product

FusBus» 17,000 mt y™,

and F30% (one of many potential proxiesfor
Fus)=0.3 y1. A corresponding B,,s, proxy
value might be approximated as
17,000/0.3=57,000 mt.

Uncertainty about F,s,and B,,s, isgreater than
estimated by statistical meansin thisanalysis.

Uncertainty is higher because estimation of
Busy 1Nvolves extrapolation beyond the
available biomass data for most stocks and
because there is increased uncertainty about
model structure at high biomass levels. In
particular, the symmetric Schaefer surplus
production model may not fit at higher
biomasslevels. A plausiblelooking quadratic
Schaefer surplus production curve could
probably befit to datafrom any stock, even if
the wunderlying production curve was
asymmetric. Thiswould hold aslong as the
range of biomasslevelsdid not extend beyond
Busy, because quadratic models are generally
good approximations to any monotonic trend
over ashortinterval. Thisapparent robustness
of quadratic models does not imply that F,,,
and B, parameters are robust, however,
because the red F,,s, and B,,s, values depend
on the surplus production relationship in
nature, not on the curvefit to the data.

Uncertainty in the biomass estimates, natural
mortality, catchesand many other factorswere
not considered in estimation of confidence
intervals for this paper. To evaluate the
effects of these factors on uncertainty, it will

benecessary toincorporateexternal or internal
surplusproductionmodel calculationsintothe
original stock assessment model (Jacobson et
a. inpress). |If al caculations are carried
out in the same computer program, bootstrap
variance calculations for estimates of F,,g,
would, for example, include uncertainty about
biomass and production estimates.

If sufficient data are available, externa fits
provide useable estimatesof MSY parameters
and help avoid problems relating fishing
mortality estimates from one model (e.g.
VPA) to MSY reference point calculations
from asecond model. Biomass estimates and
externally estimated MSY parameters are
from the same data and imply the same levels
and trends in fishing mortality, biomass and
recruitment. However, potentia problemsdue
differences in units (e.g. reference points as
biomass weighted F' s and assessment model
estimates of fully recruited F' s) remain.

The biomass data B, used in fitting external
surplusproduction modelsmay, in practice, be
fishable biomass, total biomass, fishable
abundance, total abundance, or calculated in
the original assessment model according to
any other convention that is reasonable under
the circumstances. However, the
interpretation of B,,;, and F,s may be
affected. For example, if B, measuresfishable
biomass and fishery selectivity is reasonably
constant over time, then F,,5, estimates are
equivdlent to F,g for fully recruited
individuals.

The calculations in this paper are based on
most recent or preliminary assessment results
and meant only to demonstrate the potential
utility of using external surplus production
models for a wide range of stocks off the
northeastern US. Estimates of MSY reference
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points are not for use by managers unless
reviewed, and possibly revised.

SENSITIVITY OF MSY REFERENCE
POINTSTO RECRUITMENT MODEL

The Sissenwine-Shepherd (1987) age-based
approach provides another alternative to
surplus production models for estimating
MSY. The Sissenwine-Shepherd approach
incorporates more biological detail into the
model but as noted by Mohn and Black
(1998), such estimates are highly sensitive to
the assumed relationship between spawning
stock and recruits. To assess theimplication
of the S-R function on biologica reference
points, the working group considered the
effectsof fivedifferent recruitment modelsfor
Georges Bank yellowtail flounder stocks. At
present the overfishing definition for this

stock is based on a surplus production model
but the estimates of B,,5, have been unstable.
Thus it seemed appropriate to determine if
model with more biological realism could
improve the estimation of biological
reference points.

Application to Georges Bank Yellowtail
Flounder

Dynamic pool estimates of yield, mean
biomass, and SSB per recruit were estimated
for Georges Bank yellowtail flounder using
1994-2000 data (Stone et al. 2001). Five
different stock-recruitment models for SSB
(mt) and R (recruitment in millions) were
assumed.  Results of the model fits and
comparisons with other aternatives are
summarized below.

Model Error Years | MSY [ SSB,,, | B Fsy Fmsy | Baseline
(mt) [ (mt) (ages | (wb)
4+)

YPR 94-00 Frex=0.82
F,.=0.25
F,0,=0.67

B-H: lognormal | 73-99 | 10,230 | 36,772 | 58,290 | 0.35 0.18

R=(50.3 S) /8.37+S)

B-H: Normal 73-99 | 16,860 | 60,620 | 96,080 | 0.35 0.18

R=(82.8

9S)/(13.7+9)

B-H: lognormal | 60-99 | 19,620 | 80,620 | 123,530 | 0.30 0.16

R=(105.8

S)/(24.69+S)

B-H: Normal 60-99 | 17,890 | 57,460 | 94,060 | 0.40 0.19

R=(83 S)/(10.39+S)

Constant: R=20.8 | lognormal | 73-99 | 5,530 | 10,080 | 20,480 | 0.82 0.27

ASPIC-surplus 14,140 43,470 0.33

production
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Estimates of MSY and Bmsy were sensitive
to the assumed recruitment model. MSY
estimates varied by afactor of threeamong all
models and SSBmsy estimates varied by a
factor of four. Although these results are
deterministic, they suggest that stochasticity
should include S-R specificationerror. Age-
based estimates of Fmsy wereconsistently less
than those from ASPIC but MSY and Bmsy
were sensitive to the assumed model for the
stock-recruitment  relationship. While
integrated estimates of biological reference
points may be more appropriate when based
on age-structured models, the choice of a
stock-recruitment relationship is likely to
become the predominant factor in the
estimation. Hence the justification of an
appropriate S-R model or set of S-R models
should berigorous. Formal methodsof model
selection (eg. AIC) may be useful in these
instances.

BAYESIAN SURPLUS PRODUCTION
MODELSFOR GULF OF MAINE-
GEORGESBANK REDFISH

A Bayesian surplus production (BSP) model
was applied to catch data and relative
abundance indices for redfish to address: (1)
whether initial population biomass (B,) was
an estimable parameter when it was not
assumed to be equal to carrying capacity (K);
(2) whether nonlinear models for survey
catchability could be reliably estimated; (3)
whether BSP model sresultswererobust tothe
choice of the prior distribution for carrying
capacity; and (4) how BSP mode results
compare with age-structured and ASPIC-
based results (Mayo et a. 2001). The BSP
model, the prior distributions, the input data,
and selected alternative models are described
inthefollowing sections. Wethen addressthe

four questions and discuss some implications
of our findings.

Bayesian Surplus Production Model

We use aBayesian state-space formulation of
the Schaefer surplusproductionmodel (Meyer
and Millar 1999, NEFSC 2000, Brodziak et al.
2001). This model uses a reparameterized
form of the Schaefer surplusproduction model
which relates the fraction of carrying capacity
(P, = B/K) to intrinsic growth rate, carrying
capacity, and the catch time series as

C._
Pt = Pt—l + rPt—l(l_ Pt—l) - I;l

This relationship is the basis of the state
equations for the state-space model. Stock
biomass changes through time due to harvest
and biomass production. Under the
assumption that B,=K, the state equations
determine changes in relative stock biomass
through time (t=1,...,N) via

P = explu)

Pt = @Pt—l + rPt—l(l_ Pt—l) _%ﬁe)(p(ut) fort22

where the independent lognormal process
errors for relative biomass are exp(u, ) with
u, ~ N(0,07).

Relative abundance in year t is measured by
either standardized fishery CPUE or the
swept-areaindex (I,) from the NEFSC autumn
and spring bottom trawl surveys. In the
simplest form, the CPUE or survey index is
assumed to be proportional to stock biomass
with constant catchability (Q) throughout the
assessment time horizon. This is the linear
catchability model

lt = QBt

SAW 33 Consensus Summary

261


lgarner


Alternatively the CPUE or survey index is
assumed to be proportional to stock biomass
raised to a power (B) with constant
catchability throughout the assessment time
horizon. This is the nonlinear catchability
model

|t = QBtﬁ

Either the linear or nonlinear relationship
forms the basis of the observation equations
for the state-space model. Stock biomass is
measured by the time series of survey indices.
For linear catchability, the observation
equationsrelatethe observed survey indicesto
parameters

I, = QKP, Texplv,) for t = 1,...,N

wheretheindependent lognormal observation
errorsareexp(v, ) with v, ~ N(0,t?). Similarly,
the observations equations for nonlinear
catchability are

I, = Q(kR)" texp(v,) for t =1,...,N

Using fishery CPUE and two surveys as
tuning indices, all with nonlinear catchability,
the BSP model has fifteen parameters (r, K,
0%, Qe CPUE_o? CPUE_t% CPUE_B,
Qe fall_o? fal_ 12 fal B, Qgr, SPr_o?
spr 7%, spr B) and N unknown relative
biomasses (P,) for atotal of N+15 unknowns.
To describe the Bayesian estimation
procedure, let thejoint prior of the parameters
and unobservables be p(®). Further, let the
joint likelihood of thesurvey indicesgiventhe
parameters and unobserved states be p(Data
| ©) and the joint posterior distribution of the
unobservables be p(® | Data).

Bayes' theorem determines the posterior as a
function of the prior and likelihood as

p(Datalo) p(©)
J' p(Data|©) p(©)do

p(®©|Data) =

Direct calculation of the posterior distribution
isnot possible for the BSP model because the
integral in the denominator of the right hand
sideisnot tractable. Asaresult, Markov chain
Monte Carlo (MCMC) methods were used to
obtain samplesfrom the posterior distribution
of a Bayesian model (Gilks et al. 1996,
Brooks 1998). Gibbs sampling is one type of
MCMC agorithm that can be readily applied
using the BUGS software (Gilks et al. 1994;
Meyer and Millar 1999). Computer codetofit
the BSP model was implemented using the
WINBUGS1.3 software.

Prior distributions

The prior distribution for carrying capacity
was chosen to be either informative or
uninformative. The informative prior
distribution for K was a lognormal
distribution with parameters chosen to set the
10" and 90" percentiles of the distribution.
These percentiles were 100 kmt and 1,000
kmt, respectively. Theuninformativeprior for
K was a broad uniform distribution where
K~Uniform[1kmt, 10000 kmt]. Similarly, the
prior distribution for intrinsic growth ratewas
a broad uniform distribution with
r~Uniform[0.01, 1.99].

Theprior distribution for theinverse of CPUE
or survey catchability waschosento beahigh-
variancegammadistribution. Inparticular, the
inverseof Qwasassumed to bedistributed as
Gamma(0.001,0.001). This choice gives a
relatively flat prior for Q, p(Q), that is
approximately proportional to 1/Q, that is,
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p(Q) =<1/Q. In addition, the range of possible
values of Q was bounded to fall within the
interval [0.01, 10000] to ensure that model
predictions of survey biomassindices (QKP)
were also bounded. Theprior for processerror
variance parameter (o%) was also chosen to be
aninverse gammadistribution. Theinverse of
o?wasdistributed as Gamma(4.00, 0.01). This
choice led to a 10% and 90% quantiles for o
of 0.04 and 0.08, respectively. Similarly, the
prior for observation error variance () was
chosen to be an inverse gamma distribution
for each tuning index. The inverse of t? was
distributed asGamma(2.00, 0.01). Thischoice
led to a 10% and 90% quantiles for t of 0.05
and 0.14, respectively. This implied that
observation error was somewhat larger than
processerror, athough these parameterswere
freely estimated using the MCMC agorithm.

The prior distributions for the relative
biomasses (P,) were lognormal distributions
for each year, with the possible exception of
the initial year. The prior distribution for
relative biomass in the initial year of the
assessment time horizon waseither lognormal
with amean set to B,=K or an uniform prior.
The assumption that B,=K was relaxed by
choosing abroad uninformative prior for P, to
examine the consequences of not assuming
that initial population abundance was at
carrying capacity. This prior was

P, = Uniforn]0.01,1000)

For subsequent years, the conditional prior
distribution of P, (conditioned onvaluesof P,
1, K, r, and 0 was

C
R~ Lognormal P, + 1P, (1- B.) -+ 071

Thus, the prior distribution for relative
biomass in year t was dependent upon the
previous year's relative biomass, intrinsic
growthrate, carrying capacity, and the process
error parameter.

Input Data and Alternative BSP Models
Input dataweretakenfromMayoet a. (2001).
These consisted of time series of catch
biomass for 1934-2000, standardized fishery
CPUE for 1952-1989, and NEFSC autumn
and spring survey biomass indices. These
input data were the same as the data used for
the age-structured model and ASPIC model
presented in Mayo et al. (2001).

We it six alternative BSP models to address
(1) whether initial population biomass (B,)
was an estimable parameter when it was not
assumed to be equal to carrying capacity (K);
(2) whether nonlinear models for survey
catchability could be reliably estimated; (3)
whether BSP model sresultswererobust tothe
choice of the prior distribution for carrying
capacity; and (4) how BSP model results
compare with age-structured and ASPIC-
based results. Each model used the sameinput
data. The six models differed in the initial
population biomass assumption (B,=K or
B,#K), the tuning index catchability
assumption (linear or nonlinear), and the prior
assumedfor K (informativeor uninformative).
The six models were:

l.Informative prior on K, B,=K, and
nonlinear catchability

2. Uninformative prior on K, B,=K, and
nonlinear catchability

3.Uninformative prior on K, B,;#K,
and nonlinear catchability

4.Informative prior on K, B,#K, and
nonlinear catchability
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S.Informative prior on K, B;=K, and
linear catchability

6.Uninformative prior on K, B,=K, and
linear catchability

Results

Figures D7 through D7 show the results of
fitting the six BSP models to redfish input
data. Inthese figures, estimates of exploitable
biomass and their 80% CI are depicted aswell
asmedian estimatesof r, K, maximum surplus
production (MSP), the ratio of exploitation
ratein year 2000 to the M SP exploitation rate
(HRATIO), initial biomassin 1934 (B,g,, also
denoted as B,), terminal biomass in 2001
(Bogo1), Aong with their estimated coefficients
of variation (CV's) inparentheses. Inaddition,
the range of CVs for the tuning index
catchability coefficients (Qs) are listed in
parentheses. Note that the coefficients of
variation are provided to give an indication of
the precision of the parameter estimates and
are not intended for hypothesis testing. Each
of thesix modelsshowsalong-term declinein
redfish biomass from the 1930s to the 1950s,
a moderate increase in biomass in the late
1960s, followed by a further decline in
biomass through the late 1980s, and an
increasein biomassduring the 1990s. Overall,
the primary difference between the model
resultsis the scale of the biomass trajectory.

Isinitial population biomass estimableifitis
not assumed to be equal to carrying capacity?
The answer appears to be “No”. The redfish
BSP models where B, # K (Figures D8 and
D9) have extremely large CVs on initid
biomass (92% and 136%) whichindicatesthat
this parameter is imprecisely determined.
Although we did not have time to complete
analyseswith linear catchability and B, = K, it
is likely that this imprecision is an inherent
feature that would not be affected by the
choice of catchability submodel, based on our

experience with this BSP model. Overadl, the
two BSP models (3 and 4) with B, = K are
less credible than the others due to this
imprecision in B,.

Are parameters of the nonlinear catchability
models reliably estimated?

The answer is probably not, unless they are
interpreted as nuisance parametersthat can be
expected to have high correlation due to
nonlinear model structure, as, for example,
onemight expect intheestimation of L _and K
in the von Bertalanffy growth model. The
range of CVsfor the catchability coefficients
(Qs) of the BSP models where B, = K with
nonlinear catchability is large (Figures D6
and D7), on the order of 100% and these
parameters are imprecisely determined. In
contrast, the power coefficients (ps) of the
nonlinear catchability submodel had lower
Cvs, on the order of 20-40%. This suggests
that there was probably insufficient
information to estimate two parameters for
each catchability submodel. We note that this
behavior was aso apparent for the models
where B, # K.

Arethe BSP model resultsrobust to the choice
of prior distribution for carrying capacity?
The answer appearsto be “Yes’. For each of
the pairsof BSPmodelsusinginformativeand
uninformative priorsfor K, e.g., models1 & 2
(Figures D6 and D7), models 3 & 4 (Figures
D8 and D9), and models 5 & 6 (Figures D10
and D11), theresults are generally consistent,
withsimilar estimatesof r, K, MSP, HRATIO,
Bioss ,» and B,y obtained using informative
and uninformative priors for K.

How do the BSP model results compare with
age-structured and ASPIC-based results?

Theresultsfor the two BSP modelswith B, #
K are consistent with aninitial version of the
age-structured dynamics model for redfish
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(not shown) where the size of the plus-group
in the initial year was estimated as a free
parameter. In this case, the plus-group size
was estimated to be very large in comparison
to subsequent recruitment estimates, similar to
the large initial population biomasses in
FiguresD8 and D9. Thisinitial age-structured
model was discounted by the NDWG because
there was no information to discern
recruitment strengths of year classes in the
plus-group during theinitial year and because
it implied that the redfish population was far
from an equilibrium state in 1934. Overall,
this suggests that estimates of initial biomass
different from carrying capacity are not likely
to be well determined for redfish. However,
since no directed fishery for redfish existed
prior to 1934, we believe it is reasonable to
assumethat B,g,;, was near carrying capacity.

The results for the two BSP models with
nonlinear catchability (Fig. D12) are very
similar to the results of the age-structured
dynamics model for redfish. With the
exception of anincreasein biomassinthelate
1960s, the age-structured and BSP biomass
trajectories are quite similar after 1952 when
the earliest tuning index (CPUE) begins. This
similarity in biomass trgectories over the
range of years where there was tuning
information (1952-2000) isprobably theresult
of similar modeling assumptions. In
particular, the age-structured dynamics model
includesanonlinear catchability submodel for
fishery CPUE, to account for non-random
behavior of fishing fleetsin relation to redfish
density, and adso includes a nonlinear
catchability submodel for the NEFSC spring
survey, to account for differences in redfish
schooling behavior and availability to survey
trawl gear during this season. In contrast, the
BSP model resultswith nonlinear catchability

submodels areless consistent withthe ASPIC
model results, most likely because ASPIC
assumes a linear catchability submodel.

Similarly, the resultsfor the two BSP models
with linear catchability (Figure D13) are
similar to the results of the ASPIC model for
redfish, with the exception of the late 1960s.
Presumably thisisaconsequence of both BSP
and ASPIC models using the same
catchability submodel for the tuning indices.

Discussion

The result that it is not probably not possible
to estimate an initial population biomass for
redfish that differs from carrying capacity is
not surprising given the available data. In
particular, the tuning indices for redfish
extend from 1952-2000 and so the only
information on population dynamics at the
beginning of the modeling time horizon
(1934-2001) is the catch. Regardless of this
indeterminacy, it seems satisfactory to assume
that initial redfish biomass was probably near
carrying capacity because it is a long-lived
species with low natural mortdity (e.g.,
analogous to a K-selected species) that was
not subject to adirected fishery prior to 1934.
Moreover, itisencouraging to observethat the
BSP results for a particular model
configuration were robust to the choice of
either an informative or uninformative prior
for carrying capacity.

Thehigher precision of the estimates of Qsfor
BSPswith linear versus nonlinear catchability
submodelsis consistent with our observation
that the marginal posterior densities of the
linear models were much smoother. This
visua diagnostic shows that the mixing rate
for the MCMC chains was much better with
the linear versus the nonlinear catchability
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assumption. Note, however, this does not
imply that catchability is in fact linear.
Instead, it merely shows that there is
insufficient information input to the BSP
model to give precise estimates of the
particular nonlinear model that we examined.
Nonlinear catchability submodels may be
more appropriatefor modeling the catchability
of redfish, but there is no way to discern this
using only a biomass dynamics model.

The inclusion of process error in the BSP
modelsallowedfor deviationsfromthesimple
Schaeffer model dynamics to fit observed
tuningindices. Thisincreased flexibility isthe
reason that biomass estimates from the BSP
models and the ASPIC model differed in the
late 1960s. In genera, alowing for process
error is more redlistic but comes at the
expense of reduced precision, dueto the need
to estimate the unknown biomassin each year
(N=67). Webelievethat thistrade-off worthit
because the Bayesian model provides a more
realistic depiction of the error processes, and
hence abetter quantification of the underlying
uncertainty in the management parameters of
interest for decision analyses. Or as Tukey
once put it, “Far better an approximate
answer to the right question, which is often
vague, than an exact answer to the wrong
guestion, which can alwaysbemade precise.”

RESEARCH RECOMMENDATIONS

The Methods Subcommittee considered a
wide range of topics. The resulting spectrum
of research recommendation is similarly
broad. It was noted that many of the
problems of estimation arise from the lack of
integration of reference points in current
assessment models. Modelsthat alow direct

estimation of biological reference points
within the context of biomass and mortality
estimation should be useful. However, it
should be noted that lack of contrast in the
data cannot be overcome by more
sophisticated estimation procedures. In that
regard, the apparent recovery of many stocks
in the Northeast will afford considerable
insights into population dynamics. It is
important that managers, scientists and
industry conduct specific studies and
experiments during this period.

The existing software for age-structured
projections (e.g., AGEPRO) might be
modified to allow for direct search of MSY
and biologica reference points. There was
insufficient timeto explorethis option for the
present SARC. Similarly, age-structured
production models and delay difference
approaches may provide additional realismin
the estimation of biological reference points.

It will be useful to apply the diagnostic
measures proposed herein to other species.

Improbable changes in reference points over
short time periods are probably indicative of
poor fits. Similarly, variations in estimates
among models are unlikely to occur if the
underlying data support the model.
Simulation tests of this principle would be
helpful.

The subcommittee reviewed a number of
species with widely varying life histories,
fisheries, and dataquality. Itisunlikely that a
single model or approach will sufficient to
capture the underlying dynamics and
biological reference points. Bayesian and
state-space approaches may also prove to be
adequate to incorporate the necessary realism
for such species.
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SARC COMMENTS

The SARC reviewed working documents and
presentations covering severa aspects of
production modeling. Production models are
of special importance in resource assessment
because of their role in the development of
biological reference points such as those used
by the Council.

Many of the biological reference points now
in use, however, were developed from age-
aggregated production models that pool
information across age groups, whereas many
of the stocks now managed are fully assessed
using age-disaggregated models (e.g. age-
structured, cohort-analysis or VPA models).
As pointed out in the November 2000 Report
of the Groundfish Overfishing Definition
Committee, many of the biological reference
points developed using production modeling
now need to be updated using more
comprehensive approaches, which may
include production modeling as one
component.

Inconsistencies between age-aggregated and
age-disaggregated assessments often result
from differencesin theinformation content of
the data, as well as how biomass and fishing
mortality have been defined. Thesedifferences
haveled to attempts by scientistsand othersto
convert the output from one approach so that
it corresponds to the recommendations from
another. For example, a biomass weighted F
from an age-disaggregated model isneeded to
evaluate the attainment of certain targets such
as Fmsy, which are derived from age-
aggregated production modeling exercises.

Thedifficulty hereisnot production modeling
assuch, rather it isthe development of abetter

understanding of the associ ation between age-
aggregated and age-disaggregated modeling
results and how to incorporate new and better
information into the management process
when that information becomes available. In
reviewing this issue, the SARC broadly
interpreted the terms of reference and
examined not only production-model-based
biological reference points, but also
considered alternative formats for presenting
information important to management, and in
particular discussed how information resulting
from age structured modeling approaches
could be utilized.

SARCs have not formally reviewed such
fundamental methodological issues in recent
years. And although the current SARC had
sufficient expertise to evaluate the production
modeling approaches presented at thissession,
time constraints and the priority given to
current stock assessment evaluations limited
the discussion on production models and on
the specification of biological references
pointsin general.

In addition, although the presentations and
discussions provided by Center scientists on
these topics were enlightening and useful, the
standard Advisory Report format for reporting
scientific stock status and stock specific
management advice to the Council isnot well
suited to reviews of technical issues that are
more methodological in nature. Therefore we
provide only a brief summary of our findings
and indicate areas requiring further
consideration, perhaps in a workshop setting
supported by considerable analysis.

Purpose
The Terms of Reference for this review

address a number of issues that may be
classified broadly as:
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Technical Issues:

1) How can we make better use of, and
develop further, production modeling
approaches?

2) What aretheaternativesto production
modeling and how do results from
aternative approaches compare to
proxy biological reference points? In
particular, what should we do in
circumstances where additional
information, such as age-
disaggregated information, becomes
available?

Non-technical Issues:

1) What are the implications for
management of characterizing a
fishery using a broader information
base? In particular, how can we best
useage-disaggregated informationand
model resultsin forming management
objectives that have been based
historically upon outputs from
production model s (including outputs,
such as Fmsy and Bmsy)?

2) What are the directions for future
research in these areas?

3) Is this the appropriate forum for
developing, reviewing and presenting
results from that methodological
research?

Results and Discussion
Center scientists presented information and
analyses covering:

D1) Graphicd anddiagnostic eval uation of
production models

D2) Externa surplus production models

D3) Methods for estimating production
and Fmsy in any stock model

D4) Bayesian surplus production models

The SARC listened to these presentations,
discussed the implications and potential
implementation of each subject presented,
then moved into the broader questions of
whether management objectives should be
constrained to production model type outputs,
how morecomprehensiveinformation, such as
that avail ablefrom age-disaggregated dataand
modeling, could be used, and what the
appropriate format might be for such
discussionsin the future.

What followsisabrief summary discussion of
these presentations, adiscussion of production
modelinginthe context of other approachesto
fisheries management, and a brief statement
about the usefulness to scientists and the
Council of having methods such as these
discussed by the SARC.

NEFSC Presentations

Graphical approaches to the presentation of
information and its use in facilitating
diagnosis in model estimation have evolved
rapidly in the last two decades. Part of thisis
the availability of easy to use graphical and
statistical presentation techniques that make
use of the powerful way humans can interpret
information visually. Center scientists
developed a number of these techniques to
demonstrate how they might be used to
analyze and interpret production modeling
results. The methods presented included
exploratory data analysis (EDA) applied to
survey catch-rate comparisonsto eval uate the
adequacy of the data for answering certain
guestions, envelope plots for presenting the
bounds on uncertainty in biomass estimates,

268

SAW 33 Consensus Summary


lgarner


model behavior plots to assess density
dependence as exhibited by astock, smoothed
timedependent and regression plotsto explore
correlations between survey indices, response
surface plots to describe the uncertainty of
parameters of interest, such as biological
reference points (which should also be useful
in assessing risk associated with decision
making), and funnel plots, a newly proposed
concept to assess the information content of
correlated data. The funnel plots that were
discussed are a powerful extension to the
widely used retrospective analysis approach
andwill beuseful for other assessment models
aswell as production models.

It is encouraging to see such novel visud
approachesbeing used and devel oped. Infact,
the use of these approachesis not limited to
examining surplus production modeling and
can of course be used to examinedata (such as
survey data) directly as well as be applied to
more comprehensive approaches, for example
age-structured modeling. The routine use and
review of these methods will enhance the use
of production modeling and other modeling
approaches, increase the likelihood that
application of such models is appropriate to
the available data, and will alow Council
members and their support committees to
readily visualizethe strengths and weaknesses
of the data available.

External production modelswereinvestigated
as a means to link age-structured models to
the more familiar age-aggregated surplus
production model. External refersto wherein
the process a production model is applied. In
contrast, internal approaches estimate model
parameters simultaneously while other
estimates, for example age-structured
estimates, are derived. The results, while not
encouraging for the data examined, point to

important efforts at trying to compare and
reconcile production modeling with other
modeling and estimation techniques. The
National Research Council reports (dates) on
stock assessment and improving thecollection
and use of dataencourage applying alternative
approaches to data to better understand the
information it contains. One consequence,
pointed out by the SARC, of comparing age-
structured analyses with, for example,
production model outputs may be the
recognition that earlier production modeling
results may need to be reevaluated and
updated. These comparisons also force us to
clearly define the population biomass in the
context of fishing selectivity, fishing effort
(possibly from multiple sources), other
sources of mortality or population change
(such as through discarding, migration, or
environmental change), and in the context of
management objectives and constraints.
Debate still existson preferred approachesfor
estimating biological reference points, but
effortssuch asthose discussed are encouraged
and should continue to be evaluated through
the SAW and SARC processes, as well as
through peer review from the broader
scientific community.

A presentation was made specifically on
estimating biological reference points, such as
Fmsy, fromany stock assessment model. This,
of course can be done, as was pointed out in
this work, but it begs the larger question of
whether results from more comprehensive
model sshould necessarily bewinnowed down
to the classical production model outputs.

Fishery models, in general, tend to assume
that thefundamental dynamicsof apopulation
arein someform of approximate equilibrium.
The crudeequilibrium assumptionsof the past
have been abandoned, but by definition
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models are simplifications of nature and may
not capture al population responses to
changing abundance (e.g., changes in
fecundity patterns, growth, or agestructure) or
responses to habitat changes over time (e.g.,
from contaminants or development). This
issue may be particularly important in aress,
like New England, where most fish stocksare
quite far from equilibrium, and is certainly
important when planning recovery of
depressed stocks. Thus, we consider it
especially valuable to explore population
dynamicswith avariety of modelsof differing
underlying assumptions.

Thispresumesthat the information to conduct
an age or Size structured assessment is
available, but even if it is not, alternatives
exist. Several were raised during the SARC
discussion on this issue including delay-
difference analyses and anayses simply
involving catch-rate or survey indices. And
looking more towards the future, there exists
the possibility of expanding these approaches
to the problem of multispecies and trans-
boundary stocks.

Thefinal presentation, on a Bayesian surplus
production model applied to redfish, showed
that theinitial population size (if not assumed
to be at carrying capacity) was difficult to
estimate and that non-linear catchability was
also relatively difficult to capture. The
Bayesian results, however, were consistent
with those of other age structured models and
ASPIC (an age-aggregated production model).
Again, thisis evidence that Center scientists
are engaging in research approaches that will
broaden the level of information available to
stock assessment and decision making.
Analogous to discussions made earlier on
graphical methods and model comparisons,
Bayesian approaches can al so be applied more

generaly, such asto age-structured population
analyses, or even to estimating more
elementary statistics such as estimates of
catch-rate or survey abundance. The Center
should be encouraged to continue to explore
methods for making the best use of the
information they gather through surveys and
fishing records.

For each of these topics, stock specific
recommendationshavebeenincorporatedinto
the advice for the respective species.

Production Modeling in the Context of Other
Approaches to Fisheries Management
Production modeling is avaluable tool in the
stock assessment toolbox. It provides a
reasonable method of synthesizing
information, especially in those situations
where very little information is available. (It
reliessimply upon recorded total catch and an
index of abundanceor fishing effort.) And, as
demonstrated in the presentations discussed,
there exist avariety of means of determining
the quality of the information available from
these methods and for presenting the
information they contain.

And yet, there are many instanceswherethere
is more information available to the scientist
and manager than that provided by total catch
or asurvey index alone, where the stock may
be far from equilibrium, or where the more
immediate consequences of the biological
response to management actions may be as
important as the longer-term consequences of
these actions. In these instances, a more
comprehensiveapproach may berequired, and
scientists and managers should not feel
constrained to fitting the results from these
more encompassing approaches into the
statistics provided from a simple production
model analysis.
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Unfortunately, many of the biological
reference points currently used as
management proxies may fit into this
category. Stock management will benefit from
making use of this broader information base,
but scientistswill haveto respond to that need
by providing updated measures that
characterize populations more broadly and
indicate where additional information is
needed and how the population, as defined,
should be interpreted.

The utility of production and age-structured
modeling is often improved if ther
interpretation islinked with simpler analyses,
that may include simple exploratory data
analyses, aswell asto morecomplex analyses,
such asage-structured or multispeciesmodels.

All modelsbenefit from longer dataseriesthat
demonstrate a higher contrast in biomass
levelsinresponseto harvest rates. And it goes
without saying that if the data in genera is
poor then no model will suffice. At the other
extreme, good information may be poorly
utilized, and consideration should be given to
which summary statistics are the most
informative and robust to uncertainties in the
data.

One recommendation is the use of ratios with
regard to biological reference points. For
example, in representing current F to Fmsy it
may be more reliable to consider the ratio of
one to the other than considering either
estimate in absolute terms. In many instances
the absolute levels will change, while their
relationship to one another remains stable.
Possibilities for deriving more informative
and robust measures should be explored.

The SARC notes there has been progress
made on a number of fronts on production

modeling and data analysis in general.
Additional work is needed on utilizing
information from production models, age-
structured models and more generalized
approaches in order to facilitate means for
managers and stakeholders to interpret this
information in the context of management
decisions. Thismay indicate that we will need
to step beyond a few simple biologica
reference pointsto viewing alternative means
(alternative pathways) towards achieving our
goal of sustainable fisheries. This aso
indicates that vehicles for development,
review and implementation of these methods
are needed and should be established.

The work reported was useful in generating
advicefor the stocks under consideration and
for assessments in general.

In age-structured models the focus of the
uncertainty in the estimation of biological
reference points shiftsto the specification of a
stock-recruit relationship and depends more
heavily upon the dynamics observed in recent
recruitments. In someinstances, agestructured
approaches may improve upon the estimation
of biological reference points or even provide
a broader base of reference upon which to
make decisions.

SARC Input into Methodological Review
and Devel opment

The SARC recognized the benefit of having a
discussion related to methodological
devel opment and i mplementati on and thought
that such discussions should continue.
However, it was not clear if thiswas the most
appropriate forum or structure for these
discussions. (These discussions certainly will
influence and would be influenced by other
stock assessment discussions outside the ones
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currently being considered, namely cod, white
hake, and redfish.) Nor was it clear to whom
the discussions were to be directed. (Are the
discussions aimed at directing fisheries
scientists alone, or Council advisors, or the
Council itself?) Asaconsequence, the SARC
brokethisreport into componentsdealingwith
the specific presentations, asgiven above, and
into ageneral discussion-debate. The notesto
follow represent a list of ideas based on that
genera discussion-debate, and should form a
good starting point for designing future
explorations.

Evaluation of Production Models and

Modeling Approaches in Genera

- Model exploration illustrates the
consequences of model choice and
provides guidance on uncertainty.

- Model exploration demonstrates the
limitation of both models and data.

- Multiple models may provide a needed
perspective on uncertainty.

- Exploration of alternative methods
demonstrates the limitations and
consequences of lack of information.

- Graphical methods, diagnostic
approaches, and model comparisons
provide a good way of understanding the
behavior of models to different pieces of
information.

- A singlenumber or statistic may givefalse
sense of security (certainty) about the
guestion being addressed.

- Both real data and simulated data are
useful in understanding and characterizing
model performance.

RECOMMENDATIONS

Complex systems may require
alternative perspectives and
approaches.

The methods working group should
consider a decision theoretic
framework under certain management
conditions.

Evolving methods and expanding an
information base available for fishery
management implies that managers
will perceilve Amoving goa posts@.
This does not mean the rules are
changing, but rather that new
information has been brought to bear
on the problem. This suggests that
input controls, such as effort control,
may be more a more effective and
stable management tool than output
controls, such as catch limits.
Consideration should be given to such
approaches.

Scientists and managers should be
encouraged to use modeling exercises
to explore the effectiveness of control
rules in achieving production and
standing stock objectives and to
explore the consequences and risks of
alternate management actions.

Adaptive approaches are encouraged
in order to find limits of productivity.

As information changes it will
continue to be important to
chronological changes in the fishery,
the stock, and the catch so that
information from new scientific and
management approaches can belinked
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to what has happened in the past. In
other words, preserve history.

BIOLOGICAL REFERENCE POINTS

An evaluation of how biological reference
points such as MSY, Fmsy and Bmsy
compare between modelsisauseful exercise,
but it is better done on a stock-by-stock basis
where the units of comparison and models of
choice are clearly defined.

In many instances, it may be difficult to
compare Bmsy, for example, from one model
to another in absolute terms as the definition
of biomass implicit in the model may vary
from one model to the next. In one instance
biomass may be best defined as the
exploitable stock biomass, in another instance
it may be best defined as the reproductive
stock biomass, or even stock numbers.

Thisis all very difficult, of course, when the
biological andlegal settings have been framed
intermsof these numbers. Thissuggests some
alternativemethodsfor using thisinformation.
First, how stock biomass has been defined
should be made explicit for analysis, goal
setting, and deliberations. Second,
comparisons should be viewed in a relative
rather than an absolute sense. For example,
one might ask instead what is the ratio of
current biomass to Bmsy, what is the current
fishing mortality rate is relative to Fmsy, or
what the current yield is relative to MSY.
These comparisonsarelesslikely to changeas
models and model estimates are updated than
are the absolute values themselves. Findly,
recognize that if two or more analytical
approaches exist, one can aways ask for
short-term and long-term predictions under,
for example, a statis quo scenario or an Fmsy
scenario for each approach to see what

consequences, if any, exist under each
perspective.

One major difference between production
models and age-structured models is in how
new biomass enters the standing stock. In
production models the influx of new biomass
comes in, usualy instantaneously, as a
proportion of the current biomass. In age-
structured models new biomass comes in
through recruitment, usually with a time lag
and many times based upon a stock-
recruitment rel ationship. Both representations
aresubject to assumptionsand simplifications.
It is the robustness of inferences to these
assumptions that should form the basis of
debate.

These suggestionswill not solve all problems
encountered in reference point comparisons,
but consideration of theseissues should move
the process towards uses of these measures
that have greater stability under uncertainty.
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Design Sufficiency: Application to combined
index of spring and fall research survey average
weight per tow
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FigD1. Example plot to illustrate the notion of “design sufficiency for summer flounder stock.
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Fig. D2. Construction of an envelope plot for summer flounder. BminCat and BmaxCat
are lower and upper bounds respectively, of biomass estimates based on assumed upper
and lower bounds of fishing mortality rates. Bvpais the derived estimate from the
ADAPT VPA model. The BmaxSpr and BmaxFal represent biomass levels for swept
area estimates from spring and fall survey estimates. BmaxY PR represents the proxy
biomass target constructed as the product of B/R at Fmax and the average recruitment

estimated fromthe VPA. Seetext for additional details.
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Potential changes in the relationship between spring
and fall surveys over time
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Fig. D3. Evaluation of apparent changing relationship between spring
and fall survey indices for summer flounder for three stanzas:
1976-1983, 1984-1993, and 1994-2000.
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Fig. D4. Approximate confidence regions for F,s, and B,,s, for example application to
summer flounder. Panel A illustrates the computation methodology. Panel B
[lustrates the application of the uncertainty in point estimation to development
of hypothetical control rule.
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Fig. D6

Resulls for redfish BSP model 1.

Redfish BSP model 1: B,=K and Infarmative Prior on K

Fig. D7

Results for redfish BSP model 2.

Redfish BSP model 2: B,=K and Uninformative Prior on K
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Fig. D10 | Resuiss for redfish BSP mode! 5. Fig. D11 |Racuss for redfish BSP model 6.

Redfish BSP model 5: B,=K and Informalive Prior on K Redfish BSP 6: B,=K and Uninformative Prior on K
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Flg. D12 1 Comparison of BSP resulls using linear
Comparison of BSP resulls using calchability with assessment resulls.
nonlinear calchability with assessmenl resulls.
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