List of Figures

Figure 1. Fishing mortality rate and biomass status of 19 groundfish stocks managed under the Northeast Multispecies FMP.. xv

Figure 2. Median catch-weighted depth at capture of various groundfish species in NMFS bottom trawl surveys pre and post trawl warp offset problems...xvii

Figure 3. Results of side-by-side tows made by NOAA R/Vs Albatross IV and Delaware II in paired towing in the 1980s and 2002...xvi

Figure A1a. Total commercial landings of Georges Bank cod, 1893-2001...29

Figure A1b. Total commercial landings of Georges Bank cod, 1960-2001...29

Figure A2. Standardized stratified mean catch per tow of Atlantic cod in NEFSC spring and autumn research vessel bottom trawl surveys on Georges Bank, 1963-2001...30

Figure A3. Standardized stratified mean number per tow of Atlantic cod in NEFSC and DFO spring and autumn research vessel bottom trawl surveys on Georges Bank, 1963-2002.................................30

Figure A4. Trends in total commercial landings and fishing mortality for Georges Bank cod, 1978-2001..........................31

Figure A5. Trends in stock biomass and recruitment for Georges Bank Atlantic cod, 1978-2001.................................32

Figure A6. Retrospective analysis of Georges Bank cod recruits at age 1, spawning stock biomass, and fishing mortality, based on the final ADAPT VPA formulation, 2001-1996...33

Figure A7. Fishing mortality and spawning stock biomass estimates from VPA calibrated using survey indices increased by 0% (base), 10% (110), 25% (125), and 100% (200)...34

Figure A8. Median and 80% confidence intervals of predicted spawning stock biomass and predicted catch for Georges Bank cod under Frebuild = 0.10...35

Figure B1. Total commercial landings of haddock from Georges Bank and south, 1904-2001.................................53

Figure B2. Georges Bank haddock research survey indices, 1963-2002...54

Figure B3. Trends in spawning stock biomass and recruitment for Georges Bank haddock from 1931-2001.........................55

Figure B4. Trends in commercial landings and fishing mortality for Georges Bank haddock from 1931-2001.........................56

Figure B5. Retrospective analysis of Georges Bank haddock recruitment, spawning stock biomass and fishing mortality...57

Figure B6. Georges Bank haddock sensitivity to hypothetical NEFSC survey index adjustments due to trawl warp offsets during 2000-2002...58

Figure B7. Georges Bank haddock projection results for F=FREBUILD..59

Figure C1. Total catch of Georges Bank yellowtail flounder...75

Figure C2. Survey indices of Georges Bank yellowtail flounder biomass...75

Figure C3. Survey indices of abundance at age..76

Figure C4. Summary of Georges Bank yellowtail flounder VPA results...77

Figure C5. Population abundance at age from VPA compared to equilibrium levels at MSY.................................78

Figure C6. Retrospective patterns in Georges Bank yellowtail flounder VPA...79

Figure C7. Point estimate and 80% confidence intervals for F and SSB in 2001 for the base run and three sensitivity analyses which increased the impacted survey catches...80

Figure C8. Projected spawning stock biomass under F_{rebuild}=0.22 in years 2003 through 2009 to achieve a 50% probability of B_{msy} in 2009...81

Figure C9. Mean biomass of Georges Bank yellowtail flounder and fishing mortality on biomass............................82

Figure D1. Total catch of southern New England yellowtail flounder..97

Figure D2. Survey indices of southern New England yellowtail flounder biomass...97

Figure D3a. Estimates of fishing mortality, recruitment and spawning stock biomass for southern New England yellowtail flounder from VPA...98

Figure D3b. Abundance at age of southern New England yellowtail flounder..99

Figure D4. Retrospective analysis of the southern New England yellowtail flounder VPA...100

Figure D5. Stochastic projection of spawning biomass and total catch under two scenarios of recruitment and a constant F of F_{rebuild} = 0.10...101

Figure D6. Mean biomass of southern New England yellowtail flounder and fishing mortality on biomass..................102

Figure D7. Sensitivity of results to increasing NEFSC indices since 2000 by 10%, 25% and 100%.................................103

Figure E1. Total catch of Cape Cod yellowtail flounder...118

Figure E2. Survey indices of Cape Cod yellowtail flounder biomass...118

Figure E3. Cape Cod yellowtail flounder VPA results...119

Figure E4. Retrospective analysis of the Cape Cod yellowtail flounder VPA...120

Figure E5. Stochastic projection of Cape Cod yellowtail flounder for F_{rebuild}=0.12..121
Figure S1. Atlantic halibut landings from the Gulf of Maine-Georges Bank region during 1893-2001311
Figure S2. Trends in swept-area biomass indices of Atlantic halibut from NEFSC spring and autumn bottom trawl
surveys...311
Figure S3. Trends in Atlantic halibut landings from the Gulf of Maine and Georges Bank in comparison to 5-year
moving averages of spring and autumn survey indices, 1967-2001...312
Figure S4. Trends in exploitation rate indices for Atlantic halibut from the Gulf of Maine and Georges Bank based
on 5-year moving averages of NEFSC spring and autumn survey indices, 1967-2001 Exploitation Rate
Index ..313
Figure T1. Gulf of Maine winter flounder landings by gear..322
Figure T2. Recreational landings in numbers and metric tons for Gulf of Maine winter flounder..................323
Figure T3. NEFSC Spring survey stratified mean numbers and mean weight per tow for Gulf of Maine winter
flounder..324
Figure T4. NEFSC Fall survey stratified mean numbers and mean weight per tow for Gulf of Maine winter
flounder..325
Figure T5. Massachusetts Division of Marine Fisheries spring survey stratified mean numbers and mean weight per
tow for Gulf of Maine winter flounder.................................326
Figure T6. Massachusetts Division of Marine Fisheries Fall survey stratified mean numbers and mean weight per
tow for Gulf of Maine winter flounder.................................327
Figure T7. Seabrook Nuclear Power Plant in spring and fall survey mean numbers per tow for Gulf of Maine winter
flounder..328
Figure 3.1.1. Difference between port and starboard warp marks vs. fishing depth..335
Figure 3.1.2. Predicted effect of trawl offset on reduction in area swept for fishing depths from 0 to 400 m........336
Figure 3.2.1. Location of tows by the R/V Albatross IV with “any” damage in NEFSC fall, spring and winter surveys
during 1983-2002...342
Figure 3.2.2. Location of tows by the R/V Albatross IV with “major” damage in NEFSC fall, spring and winter
surveys during 1983-2002 ..343
Figure 3.2.3. Proportion of tows with any, minor and major damage in NEFSC fall, spring and winter surveys during
1983-2002...344
Figure 3.2.4. Estimated warp effects in the final GAM model for the frequency of any damage during NEFSC
survey tows..345
Figure 3.2.5. Predicted frequency of tows with any and major gear damage as a function of tow depth, based on
separate GAM models for surveys during 2000-2002 with mis-marked warps and surveys during 1983-
2001 without mis-marked warps..346
Figure 3.3.1. Length composition data for cod on Georges Bank in spring surveys..349
Figure 3.3.2. Length composition data for haddock on Georges Bank in spring surveys349
Figure 3.3.3. Length composition data for yellowtail flounder on Georges Bank in spring surveys349
Figure 3.3.4. Length composition data for monkfish during 2001 in the NEFSC winter survey and commercial
vessels in the Cooperative Monkfish Survey........................350
Figure 3.3.5. Length composition data for cod, haddock and yellowtail flounder in paired tows for a fishing power
experiment during the spring of 2002.................................351
Figure 3.4.1. Locations of stations where video and trawl sensor data were collected to assess the effects of warp
length offsets on the trawl performance of the R/V Albatross IV during 25-26 September, 2002354
Figure 3.4.2. Yankee 36 headrope height and wing spread measurements recorded by the Simrad ITI system of the
R/V Albatross IV at stations sampled during a 25-26 September, 2002 warp length offset experiment. 355
Figure 3.4.3.............356
Figure 3.4.4. Means and standard deviations of headrope height and wing spread measurements of the Yankee 36
net of the R/V Albatross IV, at starboard and port trawl warp length offsets of 0 ft, 2 ft, 4 ft, 6 ft, 12 ft,
for stations 906, 907, 908 and 909 combined ..357
Figure 3.5.1. Example behavior of Model 2 for varying levels of θ..360
Figure 3.6.1. Box plots of stratum-specific coefficients of catch for Georges Bank stock of cod for fall, spring, and
winter NEFSC trawl surveys ..362
Figure 3.6.2. Box plots of stratum-specific coefficients of catch for Gulf of Maine stock of cod for fall, spring, and
winter NEFSC trawl surveys ..363
Figure 3.6.3. Box plots of stratum-specific coefficients of catch for Georges Bank stock of haddock for fall, spring,
and winter NEFSC trawl surveys..364
Figure 3.6.4. Box plots of stratum-specific coefficients of catch for Gulf of Maine stock of haddock for fall, spring,
and winter NEFSC trawl surveys..365
Figure 3.6.5. Box plots of stratum-specific coefficients of catch for Georges Bank stock of yellowtail flounder for fall, spring, and winter NEFSC trawl surveys ... 366
Figure 3.6.6. Box plots of stratum-specific coefficients of catch for Southern New England stock of yellowtail flounder for fall, spring, and winter NEFSC trawl surveys ... 367
Figure 3.6.7. Box plots of stratum-specific coefficients of catch for Cape Cod stock of yellowtail flounder for fall, spring, and winter NEFSC trawl surveys ... 368
Figure 3.6.8. Box plots of stratum-specific coefficients of catch for American plaice for fall, spring, and winter NEFSC trawl surveys ... 369
Figure 3.6.9. Box plots of stratum-specific coefficients of catch for Georges Bank stock of winter flounder for fall, spring, and winter NEFSC trawl surveys ... 370
Figure 3.6.10. Box plots of stratum-specific coefficients of catch for Southern New England stock of winter flounder for fall, spring, and winter NEFSC trawl surveys ... 371
Figure 3.6.11. Box plots of stratum-specific coefficients of catch for Acadian redfish for fall, spring, and winter NEFSC trawl surveys ... 372
Figure 3.6.12. Box plots of stratum-specific coefficients of catch for white hake for fall, spring, and winter NEFSC trawl surveys ... 373
Figure 3.6.13. Box plots of stratum-specific coefficients of catch for pollock for fall, spring, and winter NEFSC trawl surveys ... 374
Figure 3.6.14. Box plots of stratum-specific coefficients of catch for northern stock of windowpane flounder for fall, spring, and winter NEFSC trawl surveys ... 375
Figure 3.6.15. Box plots of stratum-specific coefficients of catch for southern stock of windowpane flounder for fall, spring, and winter NEFSC trawl surveys ... 376
Figure 3.6.16. Box plots of stratum-specific coefficients of catch for ocean pout for fall, spring, and winter NEFSC trawl surveys ... 377
Figure 3.6.17. Box plots of stratum-specific coefficients of catch for spiny dogfish for fall, spring, and winter NEFSC trawl surveys ... 378
Figure 3.6.18. Box plots of stratum-specific coefficients of catch for summer flounder for fall, spring, and winter NEFSC trawl surveys ... 379
Figure 3.6.19. Box plots of stratum-specific coefficients of catch for longhorn sculpins for fall, spring, and winter NEFSC trawl surveys ... 380
Figure 3.6.20. Box plots of stratum-specific coefficients of catch for fourspot flounders for fall, spring, and winter NEFSC trawl surveys ... 381
Figure 3.7.1. Temporal trends in catch weighted average depth for Georges Bank Cod stock for fall, winter and spring surveys ... 399
Figure 3.7.2. Temporal trends in catch weighted average depth for Gulf of Maine Cod stock for fall, winter and spring surveys ... 400
Figure 3.7.3. Temporal trends in catch weighted average depth for Georges Bank Haddock stock for fall, winter and spring surveys ... 401
Figure 3.7.4. Temporal trends in catch weighted average depth for Gulf of Maine Haddock stock for fall, winter and spring surveys ... 402
Figure 3.7.5. Temporal trends in catch weighted average depth for Georges Bank Yellowtail stock for fall, winter and spring surveys ... 403
Figure 3.7.6. Temporal trends in catch weighted average depth for Southern New England Yellowtail stock for fall, winter and spring surveys ... 404
Figure 3.7.7. Temporal trends in catch weighted average depth for Cape Cod Yellowtail Flounder stock for fall, winter and spring surveys ... 405
Figure 3.7.8. Temporal trends in catch weighted average depth for Witch Flounder stock for fall, winter and spring surveys ... 406
Figure 3.7.9. Temporal trends in catch weighted average depth for American Plaice stock for fall, winter and spring surveys ... 407
Figure 3.7.10. Temporal trends in catch weighted average depth for Acadian Redfish stock for fall, winter and spring surveys ... 408
Figure 3.7.11. Temporal trends in catch weighted average depth for White Hake stock for fall, winter and spring surveys ... 409
Figure 3.7.12. Temporal trends in catch weighted average depth for pollock stock for fall, winter and spring surveys ... 410
Figure 3.7.13. Temporal trends in catch weighted average depth for Georges Bank Winter Flounder stock for fall, winter and spring surveys. 411
Figure 3.7.14. Temporal trends in catch weighted average depth for Southern New England Winter Flounder stock for fall, winter and spring surveys. 412
Figure 3.7.15. Temporal trends in catch weighted average depth for Northern Windowpane Flounder stock for fall, winter and spring surveys. 413
Figure 3.7.16. Temporal trends in catch weighted average depth for Windowpane Flounder stock for fall, winter and spring surveys. 414
Figure 3.7.17. Temporal trends in catch weighted average depth for Ocean Pout stock for fall, winter and spring surveys. 415
Figure 3.7.18. Temporal trends in catch weighted average depth for Spiny Dogfish stock for fall, winter and spring surveys. 416
Figure 3.7.19. Temporal trends in catch weighted average depth for Summer Flounder stock for fall, winter and spring surveys. 417
Figure 3.7.20. Temporal trends in catch weighted average depth for Fourspot Flounder stock for fall, winter and spring surveys. 418
Figure 3.7.21. Temporal trends in catch weighted average depth for Longhorn Sculpin stock for fall, winter and spring surveys. 419
Figure 3.7.22. Temporal trends in catch weighted average depth for Halibut stock for fall, winter and spring surveys. 420
Figure 3.7.23. Distribution of standardized difference in catch rates vs. depth interval for all species combined. 421
Figure 3.7.24. Distribution of standardized difference in catch rates vs. depth interval for gadoid species (GB cod, GOM cod, GB haddock, GOM haddock, white hake, and pollock). 422
Figure 3.7.25. Distribution of standardized difference in catch rates vs. depth interval for flatfish species, GB winter flounder SNE winter flounder, summer flounder, and fourspot flounder. 423
Figure 3.7.26. Distribution of standardized difference in catch rates vs. depth interval for flatfish species, GB winter flounder, GB cod, GOM cod, SNE winter flounder, summer flounder, fourspot flounder, ocean pout, longhorn sculpin, spiny dogfish. 424
Figure 3.7.27. Distribution of standardized difference in catch rates vs. depth interval for flatfish species. 425
Figure 3.7.28. Predicted reductions in relative efficiency of capture for cod in fall and spring surveys given hypothesized increases in overall abundance of 10, 25, and 100%. 426
Figure 3.7.29. Predicted reductions in relative efficiency of capture for haddock in fall and spring surveys given hypothesized increases in overall abundance of 10, 25, and 100%. 427
Figure 3.7.30. Predicted reductions in relative efficiency of capture for yellowtail flounder in fall and spring surveys given hypothesized increases in overall abundance of 10, 25, and 100%. 428
Figure 3.7.31. Catch weighted average depths at capture for 16 species of groundfish taken in NEFSC bottom trawl surveys. 429
Figure 3.8. Directional change in abundance (numbers per tow) of various species/stocks for pairs of years. 433
Figure 3.9.1. Time series of survey catch rates for all species comparisons in this analysis. 442-445
Figure 3.9.2. Time series of SLSCR indices of relative fishing power for all species comparisons in this analysis. 446-449
Figure 3.11.1. Results of fishing power calibration studies for NOAA R/Vs Albatross IV and Delaware II during two time periods. 455
Figure 3.11.2. Calculated ratios of Albatross to Delaware surveys that can be detected at the 0.05 level of significance, using a two-tailed test. 456
Figure 5.1.2. Changes in stock biomass (spawning biomass or total biomass survey index) for 20 Northeast groundfish stocks, 1990-2001. 464
Figure 5.1.3. Changes in fishing mortality rate or exploitation rate indices for 19 stocks of Northeast groundfish between 1994 and 2001. 465
Figure 5.3. Trends in bottom trawl survey abundance indices, 1963-2001. 466
Figure 6.3. Summary of biological sampling for catch-at-age estimation, 1998-2001. 477
Figure H23. Predicted shift in shift in average depth distribution for population distribution at depth for varying levels of underestimation of abundance. 511