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Summary1

Spatially-structured population dynamics models are important management tools for2

harvested, highly mobile species and while conventional mark-recovery experiments remain3

useful for estimation of various demographic parameters of these models, archival tagging4

experiments are becoming an important data source for analyzing migratory behavior of5

mobile marine species. We provide a likelihood-based approach for estimating the regional6

migration and mortality rate parameters intrinsic to these models that may use information7

obtained from conventional mark-recovery and archival tagging experiments. Specifically,8

we assume that the regional location and survival of animals through time is a finite-state9

continuous-time stochastic process. The stochastic process is the basis of probability models10

for observations provided by the different types of tags. Results from application to simu-11
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lated tagging experiments for western Atlantic bluefin tuna show that maximum likelihood12

estimators based on archival tagging observations and corresponding confidence intervals13

perform similarly to conventional tagging observations for a given number of tag releases14

and releasing tags in each region can improve the behavior of maximum likelihood estima-15

tors regardless of tag type. We provide an example application with Atlantic bluefin tuna16

released with conventional tags in 1990-1994.17

Key words: finite-state continuous-time process; implanted archival tags; Markov process;18

pop-up archival tags; spatially-structured population; tag-recovery19
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1. Introduction20

Tagging experiments have proven to be powerful tools to gain demographic information21

from animal populations (Pollock, 1991; Schwarz and Seber, 1999; Seber and Schwarz, 2002).22

Statistical models are available to estimate a variety of parameters including abundance (Dar-23

roch, 1958), mortality (Hearn, Sundland and Hampton, 1987), size-specific harvest (Taylor,24

Walters and Martell, 2005) and growth rates (Laslett, Eveson and Polacheck, 2002). For25

populations of migratory animals that may be subjected to different levels of mortality in26

various regions, migration rates among adjacent regions have also been estimated through27

tagging experiments (e.g., Hilborn, 1990; Hestbeck, Nichols and Malecki, 1991; Schwarz,28

Schweigert and Arnason, 1993).29

The statistical models for mark-recovery experiments usually consider release groups and30

recaptures made in discrete time where simplifying assumptions such as migration occurring31

only once and instantly between intervals and all tagged animals of a particular release32

group are released at the same time. Furthermore, many population dynamics models used33

to manage fisheries are parameterized with instantaneous mortality rates (e.g., Quinn and34

Deriso, 1999) and it would appear natural to consider migration in the same continuous time35

framework.36

Mark-recovery experiments continue to be used widely to infer rates of movement and37

mortality of fish populations, but the relatively new popup satellite and implanted archival38

tags provide extensive observations of movements of pelagic migratory species (e.g., Block,39

Dewar, Blackwell, Williams, Prince, Farwell, Boustany, Teo, Seitz and Walli, 2001; Bonfil,40

Meÿer, Scholl, Johnson, O’Brien, Oosthuizen, Swanson, Kotze and Paterson, 2005) and41

allow inference of location continuously in time (e.g., Sibert, Musyl and Brill, 2003; Sibert,42

Lutcavage, Nielsen, Brill and Wilson, 2006). Because many species that are the subject of43

archival tagging studies may have been or continue to be the subject of conventional mark-44

recovery studies as well, a common estimation framework that can combine the information45

provided by these studies would be useful for their management.46
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To relax some unrealistic assumptions of models currently used to estimate migration47

rates from conventional mark-recovery experiments and also meet the need to allow in-48

formation from conventional and archival tagging studies to be be combined, we provide49

likelihoods appropriate for conventional and archival tagging data to estimate instantaneous50

migration and mortality rates. To assess the behavior of maximum likelihood estimators51

(MLEs), we provide simulation results for experiments using different types of tags in a52

population of animals that migrates between two regions and experiences different levels of53

natural and harvest mortality in either region. We also, provide an example application to54

Atlantic bluefin tuna (Thunnus thynnus) conventional tagging studies.55

2. Methods56

2.1 Finite-state continuous-time Markov processes57

Stochastic processes that describe the transition among a finite number of states in58

continuous time are referred to by various names including multi-state processes or finite-59

state continuous-time (FSCT) processes (Karlin and Taylor, 1975; Taylor and Karlin, 1984;60

Andersen et al., 1993). We use FSCT to emphasize the continuous-time aspect of these61

models and distinguish them from the discrete-time multi-state processes more commonly62

used to model mark-recapture experiments (e.g., Nichols and Kendall, 1995; Lebreton and63

Pradel, 2002). The fundamental characteristics of FSCT processes are the instantaneous64

intensities of transition between states ah,i (t) = limδt→0 Ph,i (t, t+ δt) /δt where 0 ≤ αh,i (t) <65

∞ and Ph,i (s, t) = P (Y (t) = i|Y (s) = h) is the probability that the process is in state66

Y (·) = i at time t ≥ s given it is in state Y (·) = h at time s (Andersen and Keiding,67

2002). In general, these transition intensities may change through time (non-homogeneous)68

and depend on the previous transition history of the process. We consider here the FSCT69

Markov process which is a class of FSCT processes where the instantaneous transition rates70

ah,i (s) depend only on the state at time s (Markovian) and are constant through time71

(homogeneous) or piece-wise constant through time.72
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The H × H infinitesimal matrix of homogeneous transition intensities, A = {ah,i} has73

diagonal elements, ah,h = −
∑H

i=1,i6=h ah,i and −ah,h are often termed hazards or forces of74

transition out of the corresponding states (Hoem, 1971). These requirements imply that75

each row of A sums to zero. For homogeneous FSCT Markov processes, the probability76

transition matrix P(s, t) = {ph,i(s, t)} is the exponential of the infinitesimal matrix77

P(s, t) = exp{A(t− s)} =
∞∑

k=0

{A(t− s)}k

k!
(1)

where t ≥ s (e.g., Cox and Miller, 1965, pp. 178-186). The infinitesimal matrix can be78

diagonalized with its eigenvalues and eigenvectors so that the probability transition matrix79

can be calculated as P(s, t) = V exp{D(t− s)}V−1 where D is a diagonal matrix of the80

eigenvalues and V is the matrix of eigenvectors (Kalbfleisch and Lawless, 1985; Commenges,81

2002).82

2.2 Defining states for animal populations83

In general, an animal may at any instant, survive or die from one of several causes, but84

these outcomes may be further detailed. For example, in many studies we discretize the85

space where a migratory animal may be found so that the resulting regions correspond to86

habitats that the animals use for different purposes (e.g., breeding and feeding grounds) or87

areas used to manage harvest of the species (e.g., area-specific harvest limits). Within a88

discrete-space system, an animal may, at any instant, remain alive in a region, die from one89

of several causes in that region or move to any of the adjacent regions. If H = {1, . . . , H} is90

the set of states that an animal may exhibit, let R, F and M represent the subsets of states91

where the animal is alive and in one of R regions, dead due to harvest in one of the R regions92

and dead due to other causes (i.e., natural mortality) in one of the R regions, respectively.93

We will use these subsets of states in formulating observation models for the three different94

types of tagging experiments below.95

The FSCT framework we consider is a generalization of simpler FSCT Markov processes96
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assumed for many animal populations. For example, it is common in many population97

dynamics models for fish populations where migration is not considered, to assume animals98

either survive or die from natural or harvest mortality sources during a time interval τ . This99

equates to a process under our framework where there is a single region and two sources of100

mortality in that region. Letting F and M represent the instantaneous rates of transition101

(within τ) into the harvest and natural mortality states, respectively, the infinitesimal matrix102

for this process in the defined time interval is103

A(τ) =




−(F +M) F M

0 0 0




where 0 is a 2 × 1 column vector. The probability transition matrix for the interval that104

provides the probabilities of being in the living and two different mortality states at the end105

of the interval is106

P = exp(Aτ) =




e−(F+M)τ F
F+M

{1 − e−(F+M)τ} M
F+M

{1 − e−(F+M)τ}

0 1 0

0 0 1



. (2)

When N0 animals are alive at the start of the interval, the expected numbers in each state107

(product of N0 and the probabilities in the first row of eq. 2) provides results widely known108

as the Baranov catch equations (Chapman, 1961; Ricker, 1975; Seber, 1982, p. 329). In fact,109

eq. 2 is the stochastic analog of the Baranov equations and these probabilities are general110

results for competing risks models with exponentially distributed life spans (Dupont, 1983;111

Kalbfleisch and Prentice, 2002, pp. 247-248). Similarly, for a population occupying two112

regions with migration rates µ12 and µ21 from regions 1 to 2 and 2 to 1, respectively, and no113
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mortality during the interval τ , the infinitesimal matrix,114

A(τ) =




−µ12 µ12

µ21 −µ21




yields the probability transition matrix,

P = exp(Aτ) =




µ21+µ12e−(µ12+µ21)τ

µ12+µ21

µ12

µ12+µ21
{1 − e−(µ12+µ21)τ}

µ21

µ12+µ21
{1 − e−(µ12+µ21)τ} µ12+µ21e−(µ12+µ21)τ

µ12+µ21


 ,

where the diagonal provides the probabilities of an animal remaining in each region through115

the interval as demonstrated differently by (Whitehead, 2001, eq. 5) for a model to estimate116

abundance and migration rates for sperm whales.117

2.3 Probability models for tagging experiments118

The probability models we present below for observations derived from conventional tags,119

popup satellite archival tags (PSATs) and implanted archival tags (IATs) account for the data120

provided by the corresponding observations as functions of the instantaneous migration and121

mortality parameters. These probability models can also be combined to make likelihood-122

based estimates of the instantaneous parameters for studies that use multiple types of tags.123

2.3.1 Pop-up satellite archival tags When PSATs are deployed on animals, they collect124

measurements of various environmental characteristics including light intensity until the tag125

releases from the animal and floats to the surface (pops up) where it relays information126

via satellite to the researcher. The tagged animal may theoretically be harvested prior to127

the pop-up time or the tag may pop-up when a tagged animal stays at a constant depth128

for specified amount of time because the animal is assumed dead (i.e., natural mortality).129

The relayed measurements of environmental characteristics can in turn be used to estimate130

geographic location of the tagged animal at a given time during the interval that the PSAT131
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was attached to the animal (e.g., Sibert et al., 2003).132

When the ocean is compartmentalized into regions, the locations at time translate into133

regional occupation at time and times of migration between regions. Although the loca-134

tions are estimated rather than known, it may be safe to ignore the resulting uncertainty135

in times of migration between regions when the regions are large relative to the uncer-136

tainty in the locations and there should be no error in the times of harvest or natural137

mortality. Here we consider the migration times as known so that the data on a tagged138

animal k observed from the time the animal is tagged t0,k to the pop-up time ta,k are139

the times of transition, tI,k = t1,k, . . . , tl,k, . . . , tnk,k : t0,k ≤ tl,k ≤ ta,k, and the states,140

YI,k = Y (t1,k), . . . , Y (tl,k), . . . , Y (tnk,k) : Y (tl,k) ∈ H, the animal takes on during the period141

the tag is operating, τk = ta,k − t0,k. Note that the set of states also includes natural and142

harvest mortality because the times of transition into these states may be observed for an143

animal with a PSAT. As these are data for a continuous-time observation of a FSCT process144

(Andersen et al., 1993; Andersen and Keiding, 2002; Commenges, 2002), the probability145

function for the set of observations from a PSAT is146

PI,k (YI,k, tI,k|t0,k, Y (t0,k)) =

nk−1∏

l=0

exp

{∫ tl+1,k

tl,k

aY (tl,k),Y (tl,k)(t)dt

}
aY (tl,k),Y (tl+1,k)(tl+1,k)

× exp

{∫ ta,k

tnk,k

aY (tnk,k),Y (tnk,k)(t)dt

}
. (3)

Notice in eq. 3 that the first line represent the product of probabilities of remaining in states147

between transition events and the transition to the next state. The second line of eq. 3148

represents the probability of remaining in the final observed state after the final observed149

transition. We assume that the release time (ta,k) is fixed or at least independent of the150

process Y (·) in eq. 3 (i.e., an independent censoring time, cf. Andersen et al., 1993, Ch.151

III).152
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When the transition intensities are constant within the interval τk, eq. 3 reduces to153

PI,k (YI,k, tI,k|t0,k, Y (t0,k)) =
H∏

h=1

eah,hτh,k

∏

i6=h

a
nh,i,k

h,i (4)

where nh,i,k =
∑nk−1

l=0 I (Y (tl,k) = h, Y (tl+1,k) = i) is the number of transitions from state154

h to state i and τh,k =
{∑nk−1

l=0 I (Y (tl,k) = h) (tl,k − tl+1,k)
}

+ I (Y (tnk,k) = h) (ta,k − tnk,k)155

is the total amount of time spent in state h. Determining the MLE for the transition156

rate ah,i is straightforward (Albert, 1962) and asymptotic variance estimators have also157

been derived (Andersen and Keiding, 2002). When a piecewise-homogeneous model is used158

where transition rates are constant between time points T1, . . . , Tj, . . . , TN , some or all of159

the instantaneous rates may be interval-specific.160

2.3.2 Conventional tags In conventional tag-recovery experiments, an animal is released161

with a unique tag and people harvesting the species may recover the tagged animal during the162

course of their efforts. Thus, given the state at time of release (t0,k), we observe the time of163

recovery (tr,k) and states immediately prior to (Y (tr,k−) ∈ R) and at recovery (Y (tr,k) ∈ F)164

for harvested animals. For unharvested animals, we know that the animal is either still165

alive or dead from natural sources at the time of analysis (Y (ta,k) ∈ {R,M}). Note that166

Y (tr,k) = Y (ta,k) for recovered animals. Thus, the data are167

{YII,k, tII,k} =





{Y (tr,k−), Y (tr,k), tr,k} if Y (ta,k) ∈ F

{Y (ta,k) ∈ {R,M}} otherwise
.

The probability function for the set of observations from a conventional tag is

PII,k (YII,k, tII,k|t0,k, ta,k, Y (t0,k)) =
{
PY (t0,k),Y (tr,k−)aY (tr,k−),Y (tr,k)

}I(Y (ta,k)∈F)

×





H∑

Y (ta,k)∈{R,M}

PY (t0,k),Y (ta,k)





I(Y (ta,k)∈{R,M})

(5)

9



where I(Y (ta,k) ∈ F) and I(Y (ta,k) ∈ {R,M}) are indicators of whether the animal is in168

harvested and non-harvested states, respectively, at time of analysis. The first line in eq. 5169

is the product of the probability of being alive in region of recovery just prior to harvest at170

time tr,k− given Y (t0,k) and the instantaneous rate of harvest in the region where recovery171

occurred. The probability PY (t0,k),Y (tr,k−) is the (Y (t0,k), Y (tr,k−)) element of the probability172

transition matrix, P(t0,k, tr,k−) and aY (tr,k−),Y (ta,k) is the (Y (tr,k−), Y (ta,k)) element of the173

infinitesimal matrix. The second line in eq. 5 is the probability of being in any of the174

nonharvested states at the time of analysis given Y (t0,k) which is the sum of the elements of175

the probability transition matrix P(t0,k, ta,k) in row Y (t0,k) where Y (ta,k) ∈ {R,M}.176

All tags are assumed to be reported here, but incomplete tag reporting could be incor-177

porated into the model by expanding and redefining the possible states. In application, we178

determine the maximum likelihood estimates using numerical methods similar to Kalbfleisch179

and Lawless (1985) where we determine the instantaneous rates and the probability transi-180

tion matrices using eq. 1 such that the required elements maximize eq. 5.181

When a model is used where transition rates are piecewise-constant between time points

T1, . . . , Tj, . . . , TN and j0,k = min{j : Tj > t0,k} and jr,k = max{j : Tj < tr,k}, the probability

transition matrices required are the product of the interval-specific matrices,

P(t0,k, tr,k) = P(t0,k, Tj0,k
)P(Tj0,k

, Tj0+1) · · ·P(Tjr,k−1, Tjr,k
)P(Tjr,k

, tr,k),

due to the Markov assumption. The probabilities necessary for an unrecovered tag are182

obtained by the product of the interval-specific matrices where ta,k is used instead of tr,k.183

2.3.3 Implanted archival tags Like conventional tags, IATs will remain in tagged ani-184

mals for the remainder of their lives and we only obtain post-release information from animals185

that are harvested. However, like PSATS, we can observe times of transition and states before186

the time of tag battery expiration (te,k) for a recovered animal (tI,k = t1,k, . . . , tl,k, . . . , tnk,k :187
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t0,k ≤ tl,k ≤ te,k, YI,k = Y (t1,k), . . . , Y (tl,k), . . . , Y (tnk,k)). If the animal is recovered after188

the battery expires, we also have an observation analogous to that of a conventional tag189

where the state at the time of battery expiration (te,k) and states just prior to and at time190

of recovery (tr,k) are known. Finally, we also have animals that are tagged and not recovered191

at the time of analysis (ta,k) as in conventional tagging experiments. Thus, the data for an192

IAT are193

{YIII,k, tIII,k} =





YI,k, tI,k if Y (te,k) ∈ F

YI,k, tI,k, Y (te,k), Y (tr,k−), Y (tr,k), tr,k if Y (te,k) ∈ R and Y (ta,k) ∈ F

{Y (ta,k) ∈ {R,M}} otherwise

.

The probability function for the set of observations from an IAT is

PIII,k (YIII,k, tIII,k|t0,k, ta,k, Y (t0,k)) =PI,k (YI,k, tI,k|t0,k, Y (t0,k))
I(Y (ta,k)∈F)

×
{
PY (te,k),Y (tr,k−)aY (tr,k−),Y (tr,k)

}I(Y (te,k)∈R,Y (ta,k)∈F)

×





H∑

Y (ta,k)∈{R,M}

PY (t0,k),Y (ta,k)





I(Y (ta,k)∈{R,M})

(6)

where PI,k (YI,k, tI,k|t0,k, Y (t0,k)) is the component representing continuous-time observation194

between times t0,k and te,k (i.e., eq. 3), the second line represents the observation of recovery195

after battery expiration (analogous to the first line in eq. 5) and the final line represents the196

observation of an animal that remains unrecovered at the time of analysis (analogous to the197

second line in eq. 5). As with the release time for PSATs, we assume that the battery life198

(te,k) of an IAT is fixed or at least independent of the process Y (·) in eq. 6.199

3. Behavior of MLEs for conventional and archival tagging experiments200

Through simulation, we explored the behavior of MLEs for the regional migration and201

mortality rate parameters based on the three likelihoods presented above for conventional,202

PSAT and IAT observations. We intend the process observed through the tagging experi-203
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ments to reflect the life history of adult western Atlantic bluefin tuna. The northern Atlantic204

Ocean is split into western and eastern regions at the 45◦W meridian for international har-205

vest management (e.g., ICCAT, 2007) and fish may migrate between western and eastern206

regions of the Atlantic Ocean and die from harvest or natural causes in either region.207

We assumed instantaneous west-to-east (µW,E) and east-to-west (µE,W ) migration rates,208

region-specific instantaneous harvest (FW and FE) and natural mortality (MW and ME)209

rates are constant throughout the time of analysis for each animal to reduce the complexity210

of the results and better observe the behavior of the MLEs for the six instantaneous rate211

parameters. Thus, the instantaneous transition matrix we use throughout simulations is212

A =




a1,1 µW,E FW 0 MW 0

µE,W a2,2 0 FE 0 ME

0 0 0 0 0 0




(7)

where a1,1 = −(µW,E +FW +MW ), a2,2 = −(µE,W +FE +ME) and 0 is a 4×1 column vector.213

Notice that states 1 and 2 (alive in the western and eastern Atlantic Ocean) comprise the214

subset R, states 3 and 4 (harvested in the western and eastern Atlantic Ocean) comprise F215

and states 5 and 6 (natural mortality in the western and eastern Atlantic Ocean) comprise216

M. The values we assumed for harvest and natural mortality (FW = 0.18, FE = 0.35,217

MW = 0.1 and ME = 0.15) are similar to those stock assessment scientists believe to operate218

on adult Atlantic bluefin tuna in the western and eastern Atlantic Ocean based on population219

dynamics models (ICCAT, 2007). The western-to-eastern and eastern-to-western Atlantic220

migration rates we assumed (µW,E = 0.073 and µE,W = 0.066, respectively) were estimated221

from probabilities of western Atlantic bluefin tuna being in different regions of the Atlantic at222

times subsequent to PSAT experiments reported by Block, Teo, Walli, Boustany, Stokesbury,223

Farwell, Weng, Dewar and Williams (2005). All rates are on the scale of yearly time units.224

The general algorithm for simulating the transition history is the same for all tag types.225

The animal is released in a given region (Y (t0,k) ∈ R) and the waiting time until the animal226
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either leaves the region or dies in the region is an exponential random variable with rate227

parameter −ah,h. Given that the animal either leaves or dies, the (H−1)×1 indicator vector228

for the next state is a multinomial random variable with probabilities, −ah,i/ah,h, i 6= h (e.g.,229

Taylor and Karlin, 1984, pp. 253-255). This procedure is repeated until the analysis time230

is reached or the animal dies. As described above, each tag type yields observations with231

different information on the process. We simulated 1000 experiments for each experiment232

type. Experiment type is defined by the type of tag used (PSAT, IAT or conventional tag),233

the total number of tags released and the proportion released in each of the 2 regions. We234

generated data and calculated likelihoods for each experiment using C programs compiled235

for R (R Development Core Team, 2006).236

For each simulated experiment we calculated MLEs and, when non-trivial (i.e, non-237

infinite) variance estimation was possible, estimated coefficients of variation (CVs) and ap-238

proximate 95% confidence intervals for each of the six instantaneous rate parameters so that239

we could compare bias, precision and 95% confidence interval coverage, ψ(0.95), of different240

experiment types. As the possibility of making inferences is as important as (or more im-241

portant than) the behavior of inference procedures when it is possible to use them, we also242

calculated the proportion of experiments where non-trivial variance estimates were possible243

(φ) for each experiment type.244

We maximized the likelihoods in the log-space of the instantaneous rate parameters to245

avoid boundary problems using the Nelder-Mead algorithm of the optim function in R (R246

Development Core Team, 2006) and variance estimates were based on numerically-derived247

hessian matrices in the corresponding space. We calculated asymmetric confidence inter-248

vals as exp
{

̂log(ai,j) ± z0.975ĈV (âi,j)
}

where ĈV (âi,j) = ŜE
{

̂log(ai,j)
}

by Taylor series249

approximation.250

There is a high incidence of release of the tag prior to the scheduled time from causes251

other than mortality (e.g., Sibert et al., 2006) which we assume is independent of the FSCT252

process. In our simulation of PSAT experiments, we modeled the release time of the tag253
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(ta,k) using a Bernoulli-beta distribution: indication of tag release prior to the scheduled time254

is a Bernoulli random variable with probability p and given the tag releases early, the time255

of release scaled by the scheduled release time is a beta random variable with parameters, a256

and b. We used values for Bernoulli-beta parameters that we estimated from release times257

of pop-up tags that have been deployed by M. E. Lutcavage and colleagues (Figure 1). We258

assumed that the scheduled time of release for tags is 0.83 years (10 months) which is similar259

to the intended release time of current PSATs. For IATs and conventional tags, we assumed260

the time of analysis is 5 years after the time of release and the battery life of IATs is similar261

to that of batteries currently used (2 years).262

3.1 Simulation Results263

When tag releases are allocated equally to both regions the probability of non-trivial264

variance estimation for MLEs of the assumed instantaneous rates converges to one for all265

tag types, as the total number of released tags increases (Figure 2, row 1). However, the rate266

of convergence of the probability of non-trivial variance estimation is generally higher for267

harvest rate MLEs than migration and natural mortality rate MLEs. The rate of convergence268

is lowest for PSATs which is at least partially due to the shorter length of observation allowed269

per tag (≤ 0.83 years). The rate of convergence is similar for experiments using IATs and270

conventional tags.271

Given non-trivial variance estimation is possible, bias of the MLEs diminishes with total272

number of released tags for all tag types, but the rate of convergence to unbiasedness is273

highest for harvest rate MLEs (Figure 2, row 2). The rate of convergence to unbiasedness274

of MLEs is lowest for PSATs except that convergence rate of the MLE for the natural275

mortality rate in the western region of the Atlantic Ocean (MW )is lowest for conventional276

tagging experiments.277

The precision of MLEs for all migration and mortality parameters increases with total278

number of released tags similarly for all types of tags when non-trivial variance estimation is279

possible (Figure 2, row 3). For a given total number of released tags, the CV of estimators280
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for migration and harvest mortality parameters are lower for IATs and conventional tags281

than PSATs and the CV of the natural mortality rate in the western region is lowest when282

conventional tags are used.283

The coverage of 95% confidence intervals converges to the appropriate probability for all284

types of tagging experiments as total number of released tags increases (Figure 2, row 4).285

The rate of convergence is highest for MLEs of harvest rates, but lowest for the MLE of286

the natural mortality rate in the western region (MW ) using IATs and conventional tags in287

particular.288

Considering the allocation of 200 tags to each region, there is generally a higher prob-289

ability of non-trivial variance estimation for all MLEs using IATs and conventional tags290

(φ > 0.8) than using PSATs when not all tags are released in a single region (Figure 3,291

row 1). For PSAT experiments, φ increases for rates of transition from alive in the western292

region to other states (µW,E, FW and MW ) or from alive in the eastern region to other states293

(µE,W , FE and ME) as the proportion of tags released in the respective regions increases.294

For experiments using IATs, the same relationship occurs for harvested mortality rates, but295

φ for migration rates and natural mortality rates is highest (φ > 0.9) when all tags are not296

released in a single region. The probability of non-trivial variance estimation also increases297

for MLEs of the rates of migration from western to eastern regions and western natural298

mortality as the proportion of tags released in western region increases using conventional299

tags, but this relationship does not hold for the eastern region.300

Given that non-trivial variance estimation is possible for an experiment, the relative bias301

is least in absolute percentage (|%Relative Bias| ∼ 0 − 10%) for all MLEs when all tags302

are not released in a single region (Figure 3, row 2). When all tags are released in a single303

region relative bias of some MLEs can be greater than 100% using PSATS or conventional304

tags and greater than 50% using IAT tags. For experiments using PSATs, relative bias305

for MLEs of mortality or emigration rates increase as the proportion of tags released in the306

corresponding region decreases. The relative bias of MLEs of FW , MW and µW,E also increase307
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as the proportion of conventional tags released in the western region decreases. Relative bias308

of MW and ME using IATs is positive when no tags are released in the respective regions309

and negative when all tags are released in the respective regions.310

For all tag types, coefficients of variation (CVs) are generally greatest when all tags311

are released in a single region (Figure 3, row 3). The CVs generally decrease for rates of312

transition from alive in the western region to other states (µW,E, FW and MW ) or from alive313

in the eastern region to other states (µE,W , FE and ME) as the proportion of tags released314

in the respective regions increase. When tags are not released in a single region, CVs of all315

MLEs are similar for all tag types and a given allocation.316

The probability of 95% confidence interval coverage is generally negligibly biased for all317

types of tagging experiments when not all tags are release in one region (Figure 3, row 4).318

However, confidence interval coverage can be poor for archival tag experiments when all tags319

are released in a single region (ψ(0.95) < 0.80). Using PSATs, confidence interval coverage320

converges to unbiasedness for rates of transition from alive in the western region to other321

states (µW,E, FW and MW ) or from alive in the eastern region to other states (µE,W , FE322

and ME) as the proportion of tags released in the respective regions increase. Using IATs,323

confidence intervals are too conservative for natural mortality rates when all tags are released324

in a single region and for the rate of migration out of the western region when all tags are325

released in the eastern region and vice versa (ψ(0.95) > 0.99). When all tags are released in326

eastern region, confidence interval coverage for the MLE of FW is strongly negatively biased327

using any type of tag, but the same bias in the MLE of FE only occurs using PSATs when328

all tags are released in the western region.329

4. An example: Atlantic bluefin tuna conventional tagging data330

Conventional tagging experiments for Atlantic bluefin tuna have been conducted through-331

out the northern Atlantic Ocean for several decades and the resulting data have been archived332

by the International Commission for the Conservation of Atlantic Tunas (ICCAT). We con-333

sidered a subset of the archived data where tagged fish were released in 1990-1994 and334
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recaptures were made prior to the beginning of 1995 (assumed end of study). We used335

the longitudes of tagged fish at release and recovery to determine the regional locations at336

those times. The dates of release and recovery are used to determine the times on study337

(ta,k − t0,k ≤ 5 years). Of the 2022 tagged fish released in the western region of the Atlantic338

Ocean, 65 were recaptured in the same region and 6 were recaptured in the eastern region.339

Of the 4288 tagged fish released in the eastern region, 72 were recaptured in the same region340

and 6 were recaptured in the western region (Figure 4).341

For this example, we have the same instantaneous rates as the simulation study above,342

but the probability of reporting harvested tags is thought to be substantially less than343

1. Because there is no auxilliary information to estimate reporting probability and it is344

completely confounded with natural mortality rates, we assume a value for natural mortality345

rate (MW = ME = 0.15) similar to values believed by Atlantic bluefin assessment scientists346

(ICCAT, 2007) and estimate reporting probability (0 ≤ ρ ≤ 1) along with migration and347

fishing mortality rates. The resulting instantaneous transition matrix is348

A =




a1,1 µW,E ρWFW 0 (1 − ρW )FW +MW 0

µE,W a2,2 0 ρEFE 0 (1 − ρE)FE +ME

0 0 0 0 0 0




(8)

where a1,1 = −(µW,E +FW +MW ), a2,2 = −(µE,W +FE +ME) and 0 is a 4×1 column vector.349

We fit a suite of nested models where all rates are the same for each region (µW,E = µE,W ,350

FW = FE and ρW = ρE; m0), only harvest mortality rates are region-specific (m1), harvest351

and migration rates are region-specific (m2), migration rates are region-specific and harvest352

rates are both region- and year-specific (m3) and reporting probability is also region-specific353

(m4).354

For each model, we maximized eq. 5 with respect to the migration and mortality rates355

where the necessary probabilities are calculated using eq. 1 (year-specific for models m3356

and m4). For the best model, we estimated variances and calculated asymmetric confidence357

17



intervals for the migration and mortality rates using the same methods as the simulation358

study above, but a logit transformation of reporting probability is estimated due to its359

constraints.360

Through likelihood ratio testing, the model with region- and year-specific harvest mortal-361

ity rates and region-specific migration rates (m3) provides the best fit to the Atlantic bluefin362

tuna data (Table 1). Based on model m3, there is evidence of a very low tag reporting prob-363

ability from harvested individuals (∼ 0.122) and estimates of harvest mortality are greater364

for the western region than the eastern region within a given year, but the estimates tend to365

decrease over time for a given region (Table 2). The migration rate from the western region366

to eastern region of the Atlantic Ocean is greater than the opposite migration rate which367

would result in a in a greater probability of living individuals occurring in the eastern region368

over time.369

5. Discussion370

The results we present here demonstrate that the finite-state continuous-time approach371

is useful for combining information from the different tagging studies to estimate migration372

and mortality rates. Current population dynamics models used for fisheries management373

usually focus on regional populations and parameterize mortality rates instantaneously and,374

for migratory species, some models make the practical but undesirable assumption that375

migration and mortality happening in separate intervals (e.g., Hampton and Fournier, 2001).376

More general models that consider instantaneous migration that “competes” with mortality377

sources simultaneously using a finite-state continuous-time framework could make use of the378

likelihoods we propose when conventional and(or) archival tagging data are available.379

Although we partition space and parameterize the FSCT process for fisheries manage-380

ment, the partitioning and parametrization can also address behavioral or ecological char-381

acteristics of the population of interest. With Atlantic bluefin tuna for example, we might382

further partition the space to represent spawning and feeding grounds within each region383

because adults are thought to migrate between these areas during certain periods each year.384
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We might also constrain migration rates to the spawning and feeding grounds to be higher385

at the appropriate periods to reflect these life history attributes of the population. The386

regional migration and mortality model is also directly applicable to management regimes387

for many species that employ protected areas where no harvest is allowed (e.g., Roberts,388

Bohnsack, Gell, Hawkins and Goodridge, 2001; Field, Punt, Methot and Thompson, 2006).389

Harvest rates would be set equal to zero in the protected areas and migration rates among390

the protected and unprotected areas could be estimated from tagged animals.391
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Table 1

Sequential likelihood ratio tests of nested models fit to Atlantic bluefin tuna tagging data.
The number of parameters (np) and p-values (P ) are provided.

Model log(L) np P

m0 −1786.65 3
m1 −1780.38 4 0.0004
m2 −1776.26 5 0.0041
m3 −1752.03 13 8.067 × 10−8

m4 −1750.81 14 0.1183

Table 2

Parameter estimates and asymmetric 95% confidence intervals provided by model m3 from
fitting Atlantic bluefin tuna tagging data.

parameter estimate SE CI

µW,E 0.1832 0.0750 (0.0821 - 0.4089)
µE,W 0.0374 0.0158 (0.0164 - 0.0855)
FW,1990 0.5168 0.2491 (0.2009 - 1.3292)
FE,1990 0.1773 0.0816 (0.0719 - 0.4369)
FW,1991 0.3946 0.1545 (0.1832 - 0.8498)
FE,1991 0.1360 0.0538 (0.0627 - 0.2953)
FW,1992 0.1255 0.0580 (0.0507 - 0.3107)
FE,1992 0.0370 0.0167 (0.0153 - 0.0895)
FW,1993 0.1256 0.0584 (0.0505 - 0.3123)
FE,1993 0.0641 0.0279 (0.0273 - 0.1505)
FW,1994 0.0910 0.0523 (0.0295 - 0.2809)
FE,1994 0.0300 0.0157 (0.0107 - 0.0838)
ρ 0.1222 0.0063 (0.0630 - 0.2238)
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Figure 1. Distribution of the scaled release times of prematurely released pop-up satel-
lite archival tags scheduled to release greater than 250 days after deployment (n = 192).
The curve represents a beta distribution with parameters (a = 0.6785472, b = 1.508478)
determined by fitting the scaled release times. The probability of premature release is
p = 0.2554745.
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Figure 2. Probability of non-trivial variance estimation (φ), percent relative bias, coefficient of variation (CV) and probability
of approximate 95% confidence interval containing true parameter value (ψ(0.95)) for maximum likelihood estimators of the
migration and mortality rates (columns) when experiments use popup satellite archival (solid line), implanted archival (dashed
line) or conventional (dotted line) tags released in equal proportions in the western (W ) and eastern (E) regions. Bias, CV and
ψ(0.95) results are based on the subsets of 1000 simulations of tagging experiments for each tag type and sample size in which
non-trivial variance estimation is possible.
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of approximate 95% confidence interval containing true parameter value (ψ(0.95)) for maximum likelihood estimators of the
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size in which non-trivial variance estimation is possible.
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Figure 4. The frequency of recovery times in the western (a and c) and eastern (b and d)
regions of the Atlantic Ocean for conventional-tagged Atlantic bluefin tuna released in the
western (top row) and eastern (bottom row) regions in 1990-1994 and recovered prior to the
beginning of 1995.


